Skip to main content
Glama
models.py•1.82 kB
from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import BaseModel class JobTask(BaseModel): """Represents a Databricks job task.""" task_key: str notebook_task: Optional[Dict[str, Any]] = None existing_cluster_id: Optional[str] = None new_cluster: Optional[Dict[str, Any]] = None class Job(BaseModel): """Simplified Databricks Job model used for job creation.""" name: str tasks: List[JobTask] existing_cluster_id: Optional[str] = None new_cluster: Optional[Dict[str, Any]] = None class Run(BaseModel): """Represents a Databricks job run.""" run_id: int job_id: int state: Dict[str, Any] class WorkspaceObject(BaseModel): """Workspace object such as a notebook or directory.""" path: str object_type: str language: Optional[str] = None class DbfsItem(BaseModel): """File or directory within DBFS.""" path: str is_dir: bool file_size: Optional[int] = None class Library(BaseModel): """Specification of a library to install on a cluster.""" pypi: Optional[Dict[str, str]] = None maven: Optional[Dict[str, Any]] = None egg: Optional[str] = None whl: Optional[str] = None class Repo(BaseModel): """Represents a Databricks repo.""" id: Optional[int] = None url: str provider: str branch: Optional[str] = None path: Optional[str] = None class Catalog(BaseModel): """Unity Catalog catalog.""" name: str comment: Optional[str] = None class Schema(BaseModel): """Unity Catalog schema.""" name: str catalog_name: str comment: Optional[str] = None class Table(BaseModel): """Unity Catalog table.""" name: str schema_name: str catalog_name: str comment: Optional[str] = None

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/robkisk/databricks-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server