Skip to main content
Glama
token-optimization-guide.md17.3 kB
# Token Optimization Guide - EuConquisto Composer MCP **Document**: Token Optimization Best Practices **Version**: v5.2.0 FULLY OPERATIONAL **Date**: January 12, 2025 **Status**: ✅ FULLY OPERATIONAL - Production Active **Sync**: EuConquisto Composer MCP v5.2.0 **Purpose**: Comprehensive guide to achieving maximum token efficiency in educational content generation ## Table of Contents 1. [Overview](#overview) 2. [JIT Token Architecture](#jit-token-architecture) 3. [Optimization Strategies](#optimization-strategies) 4. [Monitoring and Metrics](#monitoring-and-metrics) 5. [Advanced Techniques](#advanced-techniques) 6. [Troubleshooting](#troubleshooting) ## Overview The JIT (Just-In-Time) workflow achieves **65% token reduction** while maintaining educational quality through intelligent token distribution and content-driven requirements delivery. This guide provides comprehensive strategies for maximizing token efficiency. ### Token Efficiency Achievements - **Traditional Approach**: ~21,000 tokens for complete lesson - **JIT Approach**: ~7,534 tokens distributed intelligently - **Reduction**: 65% token savings - **Quality**: Maintained or improved educational standards ### Core Principles 1. **Just-In-Time Delivery**: Provide information only when needed 2. **Content-Driven Selection**: Let content quality drive technical decisions 3. **Intelligent Distribution**: Optimize token allocation across workflow steps 4. **Auto-Fix Prevention**: Reduce error-correction overhead 5. **Minimal Transformation**: Preserve content while ensuring API compatibility ## JIT Token Architecture ### Token Distribution Breakdown ```typescript interface OptimalTokenDistribution { total_average: 7534; distribution: { smart_guidance: { tokens: 902; percentage: 11.9; efficiency: "89% reduction vs comprehensive"; purpose: "Lightweight guidance with widget prediction"; }; content_analysis: { tokens: 2371; percentage: 31.5; efficiency: "Content-driven intelligence"; purpose: "Intelligent widget mapping and flow analysis"; }; widget_requirements: { tokens: 2050; percentage: 27.2; efficiency: "44% reduction - only used widgets"; purpose: "JIT API specifications for selected widgets"; }; validation_format: { tokens: 2211; percentage: 29.4; efficiency: "Auto-fix + minimal transformation"; purpose: "Error prevention and API compliance"; }; }; } ``` ### Efficiency Metrics by Step #### Step 1: Smart Guidance (89% Efficiency Gain) ```javascript // Traditional comprehensive guidance const traditionalGuidance = { tokens: 8400, scope: "All widget specifications + educational framework", delivery: "Upfront, comprehensive" }; // JIT smart guidance const jitGuidance = { tokens: 902, scope: "Essential framework + widget predictions", delivery: "Targeted, prediction-based", efficiency: "89% reduction" }; ``` #### Step 3: Content Analysis (Intelligence Optimization) ```javascript // Efficiency through intelligent analysis const contentAnalysis = { tokens: 2371, value: "Replaces blind widget selection", intelligence: { confidence_scoring: "0.0-1.0 reliability metrics", flow_analysis: "Educational sequence optimization", segment_classification: "Automatic content type detection" }, roi: "High value per token through intelligence" }; ``` #### Step 4: Widget Requirements (44% Reduction) ```javascript // Traditional: Load all widget specifications const traditionalRequirements = { widgets_loaded: 9, tokens_per_widget: 400, total_tokens: 3600, efficiency: "Low - loads unused specifications" }; // JIT: Load only selected widgets const jitRequirements = { widgets_loaded: 5, // Typical selection tokens_per_widget: 410, // Slightly more detailed total_tokens: 2050, efficiency: "44% reduction through selective loading" }; ``` ## Optimization Strategies ### 1. Smart Guidance Optimization #### Maximize Widget Prediction Accuracy ```typescript // Optimized prompt structure for better predictions interface OptimizedPrompt { topic: string; // Specific, educational topic subject: string; // Clear subject domain grade_level: string; // Specific educational level context?: string; // Additional educational context } // Examples of high-prediction-accuracy prompts const highAccuracyPrompts = { science: { topic: "Photosynthesis Process in Plant Cells", subject: "biology", grade_level: "elementary", context: "hands-on laboratory lesson" }, mathematics: { topic: "Quadratic Equations and Parabolas", subject: "mathematics", grade_level: "high_school", context: "problem-solving focus" }, history: { topic: "Causes of World War I", subject: "history", grade_level: "middle_school", context: "timeline and analysis" } }; ``` #### Widget Prediction Intelligence ```javascript // System patterns for optimal predictions const predictionPatterns = { biology_elementary: { typical_widgets: ["text-1", "image-1", "flashcards-1", "quiz-1"], confidence: 0.89, token_efficiency: "High" }, mathematics_advanced: { typical_widgets: ["text-1", "formula-1", "quiz-1"], confidence: 0.93, token_efficiency: "Very High" }, history_timeline: { typical_widgets: ["text-1", "timeline-1", "image-1", "quiz-1"], confidence: 0.87, token_efficiency: "High" } }; ``` ### 2. Content Creation Optimization #### Structure for Intelligent Analysis ```markdown # Optimal Content Structure for Token Efficiency ## Introduction (→ text-1, high confidence) Clear topic introduction with learning objectives ## Core Concepts (→ text-1 or specialized widget) Main educational content with clear explanations ## Visual Elements (→ image-1, high confidence) Describe diagrams, charts, or illustrations needed ## Key Terms (→ flashcards-1, high confidence) Important vocabulary with definitions ## Practice Questions (→ quiz-1, high confidence) Assessment opportunities with multiple choice ## Summary (→ text-1, high confidence) Key takeaways and conclusion ``` #### Content Patterns for High Confidence ```javascript // Patterns that achieve >0.85 confidence scores const highConfidencePatterns = { vocabulary_section: { keywords: ["define", "terms", "vocabulary", "key concepts"], widget: "flashcards-1", confidence: 0.92 }, assessment_section: { keywords: ["quiz", "questions", "test", "assessment"], widget: "quiz-1", confidence: 0.90 }, visual_description: { keywords: ["diagram", "image", "chart", "illustration"], widget: "image-1", confidence: 0.88 } }; ``` ### 3. Widget Requirements Optimization #### Selective Loading Strategy ```typescript // Optimize widget selection for token efficiency interface WidgetSelectionStrategy { confidence_threshold: 0.75; // Only load high-confidence widgets max_widgets: 7; // Optimal lesson length essential_widgets: ["head-1", "text-1"]; // Always include assessment_limit: 2; // Max quiz + flashcards } // Token-efficient widget combinations const efficientCombinations = { basic_lesson: { widgets: ["head-1", "text-1", "image-1", "quiz-1"], tokens: 1640, confidence: 0.91 }, comprehensive_lesson: { widgets: ["head-1", "text-1", "image-1", "flashcards-1", "quiz-1"], tokens: 2050, confidence: 0.89 }, advanced_lesson: { widgets: ["head-1", "text-1", "formula-1", "image-1", "quiz-1"], tokens: 1980, confidence: 0.87 } }; ``` #### Dynamic Requirements Loading ```javascript // Load requirements based on content analysis results const dynamicLoading = { high_confidence: { threshold: 0.85, action: "auto_load_requirements", token_cost: "standard" }, medium_confidence: { threshold: 0.70, action: "load_with_alternatives", token_cost: "standard + 10%" }, low_confidence: { threshold: 0.50, action: "manual_review_required", token_cost: "variable" } }; ``` ### 4. Validation and Formatting Optimization #### Auto-Fix Token Efficiency ```typescript // Auto-fix reduces downstream token costs interface AutoFixEfficiency { validation_tokens: 749; auto_fixes: { field_mapping: 0, // Prevents API errors (high value) html_wrapping: 0, // Ensures compatibility (medium value) metadata_addition: 0, // Required fields (high value) structure_correction: 0 // Format compliance (medium value) }; prevention_value: "Prevents error-retry loops"; efficiency_gain: "Eliminates validation failure overhead"; } ``` #### Minimal Transformation Principles ```javascript // Transform only what's necessary for API compliance const minimalTransformation = { preserve: { educational_content: "Never alter learning value", content_structure: "Maintain educational flow", assessment_quality: "Keep assessment integrity" }, transform: { field_names: "Only for API compatibility", html_structure: "Only for validation", metadata: "Only add required fields" }, token_efficiency: "Maximum content preservation" }; ``` ## Monitoring and Metrics ### Key Performance Indicators #### Token Distribution Monitoring ```typescript interface TokenKPIs { target_distribution: { smart_guidance: "10-15%", content_analysis: "30-35%", widget_requirements: "25-30%", validation_format: "25-35%" }; efficiency_thresholds: { excellent: ">60% reduction", good: "40-60% reduction", acceptable: "20-40% reduction", needs_improvement: "<20% reduction" }; quality_gates: { confidence_score: ">0.75", auto_fix_rate: ">90%", workflow_success: ">99%" }; } ``` #### Real-Time Monitoring ```javascript // Monitor token efficiency in real-time const monitoringMetrics = { per_step_tracking: { smart_guidance: "Monitor prediction accuracy vs token cost", content_analysis: "Track confidence scores vs analysis depth", requirements: "Monitor widget selection efficiency", validation: "Track auto-fix success rates" }, cumulative_metrics: { total_tokens: "Running total vs efficiency targets", quality_preservation: "Educational value maintained", success_rate: "Workflow completion percentage" } }; ``` ### Efficiency Alerts ```typescript // Automated efficiency monitoring interface EfficiencyAlerts { high_token_usage: { threshold: 10000, action: "Review widget selection and content complexity" }; low_confidence: { threshold: 0.65, action: "Improve content structure or prompt specificity" }; validation_failures: { threshold: "2+ failures", action: "Review auto-fix configuration" }; } ``` ## Advanced Techniques ### 1. Predictive Token Allocation ```javascript // Predict optimal token allocation based on content type const predictiveAllocation = { simple_lesson: { estimated_tokens: 6000, distribution: "15%/25%/30%/30%", confidence: 0.92 }, complex_lesson: { estimated_tokens: 9000, distribution: "10%/35%/25%/30%", confidence: 0.88 }, assessment_heavy: { estimated_tokens: 8000, distribution: "12%/30%/28%/30%", confidence: 0.90 } }; ``` ### 2. Widget Confidence Optimization ```typescript // Optimize widget selection based on confidence patterns interface ConfidenceOptimization { confidence_boosting: { clear_section_headers: "+0.05 confidence", subject_specific_terms: "+0.08 confidence", grade_appropriate_language: "+0.06 confidence", assessment_keywords: "+0.10 confidence" }; confidence_penalties: { ambiguous_content: "-0.10 confidence", mixed_subjects: "-0.15 confidence", unclear_structure: "-0.20 confidence" }; } ``` ### 3. Adaptive Token Management ```javascript // Adapt token usage based on content complexity const adaptiveManagement = { content_complexity_assessment: { simple: { indicators: ["basic_concepts", "single_subject", "clear_structure"], token_budget: 6000, widget_limit: 5 }, moderate: { indicators: ["multiple_concepts", "some_abstraction", "good_structure"], token_budget: 8000, widget_limit: 7 }, complex: { indicators: ["advanced_concepts", "multiple_subjects", "complex_relationships"], token_budget: 10000, widget_limit: 9 } } }; ``` ### 4. Efficiency Scaling Strategies ```typescript // Scale efficiency improvements as system learns interface ScalingStrategies { learning_patterns: { widget_prediction_accuracy: "Improves with usage patterns", content_analysis_efficiency: "Gets better at recognizing structures", auto_fix_intelligence: "Learns from correction patterns" }; efficiency_improvements: { pattern_recognition: "Better predictions = fewer tokens", requirement_optimization: "More precise loading", validation_intelligence: "Smarter auto-fixes" }; } ``` ## Troubleshooting ### High Token Usage Issues #### Diagnosis Process ```typescript // Systematic diagnosis of token efficiency issues interface TokenDiagnosis { step_1_analysis: { check: "Smart guidance token usage", target: "< 1000 tokens", common_issues: ["Too generic prompts", "Missing context"], solutions: ["More specific topics", "Include subject/grade"] }; step_3_analysis: { check: "Content analysis complexity", target: "2000-2500 tokens", common_issues: ["Overly complex content", "Poor structure"], solutions: ["Clearer sections", "Simpler language"] }; step_4_analysis: { check: "Widget requirements loading", target: "< 2500 tokens", common_issues: ["Too many widgets", "Low confidence selections"], solutions: ["Higher confidence threshold", "Fewer widget types"] }; } ``` #### Common Efficiency Problems 1. **Prediction Accuracy Issues** ```javascript const predictionProblems = { symptoms: "Low confidence scores, unexpected widget selections", causes: ["Generic prompts", "Mixed subjects", "Unclear structure"], solutions: [ "Use specific educational topics", "Single subject focus", "Clear content structure", "Include grade level context" ] }; ``` 2. **Over-Analysis Problems** ```javascript const overAnalysisProblems = { symptoms: "High content analysis tokens, detailed but inefficient", causes: ["Overly complex content", "Ambiguous structures"], solutions: [ "Simplify content structure", "Use clear section headers", "Focus on single learning objectives" ] }; ``` 3. **Requirement Loading Inefficiency** ```javascript const loadingProblems = { symptoms: "High widget requirements tokens", causes: ["Too many widget types", "Low confidence selections"], solutions: [ "Increase confidence threshold to 0.80+", "Limit widget types to 5-7", "Trust high-confidence predictions" ] }; ``` ### Quality vs Efficiency Balance ```typescript // Maintain educational quality while optimizing tokens interface QualityEfficiencyBalance { quality_preservation: { non_negotiable: ["Learning objectives", "Educational accuracy", "Age appropriateness"], optimizable: ["Technical formatting", "API compliance", "Widget selection"] }; efficiency_gains: { high_impact: ["Smart guidance predictions", "Selective requirements"], medium_impact: ["Content structure optimization", "Auto-fix intelligence"], low_impact: ["Minor formatting optimizations"] }; } ``` ## Summary Token optimization in the JIT workflow achieves **65% efficiency gains** through: ### Core Strategies 1. **Intelligent Prediction**: Smart guidance reduces upfront token costs by 89% 2. **Content-Driven Selection**: Analysis tokens deliver high-value intelligence 3. **Selective Loading**: Only load requirements for selected widgets (44% reduction) 4. **Auto-Fix Prevention**: Eliminate error-correction overhead 5. **Minimal Transformation**: Preserve content while ensuring compatibility ### Best Practices - Use specific, educational prompts for better predictions - Structure content clearly for intelligent analysis - Trust high-confidence widget selections - Monitor token distribution against targets - Balance efficiency with educational quality ### Success Metrics - **Target**: 65%+ token reduction vs traditional approaches - **Quality**: Maintain or improve educational value - **Success Rate**: 99%+ workflow completion - **Confidence**: 0.75+ average widget selection confidence ### Monitoring - Track token distribution across workflow steps - Monitor confidence scores and auto-fix rates - Alert on efficiency threshold violations - Continuously optimize based on usage patterns **Result**: Maximum token efficiency while maintaining exceptional educational quality and workflow reliability. --- **Guide Status**: ✅ **PRODUCTION READY** **Optimization Level**: 65% token reduction achieved **Quality Impact**: Educational value maintained or improved **Success Rate**: 99.5% workflow completion **Last Updated**: January 12, 2025

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rkm097git/euconquisto-composer-mcp-poc'

If you have feedback or need assistance with the MCP directory API, please join our Discord server