Skip to main content
Glama

Azure Usage MCP Server

data_processor.py2.21 kB
import pandas as pd import matplotlib.pyplot as plt import os from datetime import datetime def load_csv(file_path: str) -> pd.DataFrame: df = pd.read_csv(file_path) return df def summarize_data(df: pd.DataFrame) -> str: summary = f"Rows: {len(df)}\nColumns: {', '.join(df.columns)}\n\n" # Azure-specific summary if 'Cost' in df.columns: total_cost = df['Cost'].sum() summary += f"Total Cost: ${total_cost:.2f}\n" summary += f"Average Cost: ${df['Cost'].mean():.2f}\n" if 'ServiceName' in df.columns: top_services = df.groupby('ServiceName')['Cost'].sum().sort_values(ascending=False).head(5) summary += "\nTop 5 Services by Cost:\n" for service, cost in top_services.items(): summary += f"- {service}: ${cost:.2f}\n" if 'ServiceRegion' in df.columns: top_regions = df.groupby('ServiceRegion')['Cost'].sum().sort_values(ascending=False).head(5) summary += "\nTop 5 Regions by Cost:\n" for region, cost in top_regions.items(): summary += f"- {region}: ${cost:.2f}\n" return summary def generate_chart(df: pd.DataFrame, x_col: str, y_col: str, output_dir='reports/charts') -> str: if not os.path.exists(output_dir): os.makedirs(output_dir) filename = f"{datetime.now().strftime('%Y%m%d%H%M%S')}_chart.png" path = os.path.join(output_dir, filename) # For Azure data, we might want to aggregate data if x_col in ['ServiceName', 'ServiceRegion', 'ServiceType']: # Group by the x column and sum the y column chart_data = df.groupby(x_col)[y_col].sum().sort_values(ascending=False).head(10).reset_index() # Create a bar chart plt.figure(figsize=(10, 6)) plt.bar(chart_data[x_col], chart_data[y_col]) plt.xticks(rotation=45, ha='right') plt.title(f"{y_col} by {x_col}") plt.tight_layout() plt.savefig(path) plt.close() else: # Default behavior for other columns df.plot(kind='bar', x=x_col, y=y_col, legend=False, figsize=(10, 6)) plt.tight_layout() plt.savefig(path) plt.close() return path

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rithik-perera/CodeCrunchMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server