Skip to main content
Glama

Agent MCP

OpenAIEmbeddingProvider.ts2.47 kB
// OpenAI Embedding Provider // Users should implement this provider to use OpenAI embeddings import { BaseEmbeddingProvider } from '../BaseEmbeddingProvider.js'; import { PROVIDER_CONFIG, PROVIDER_MODEL_DIMENSIONS } from '../../../core/config.js'; /** * OpenAI Embedding Provider Implementation * Uses OpenAI's text-embedding models * * To implement: * 1. Install OpenAI SDK: npm install openai * 2. Set OPENAI_API_KEY in environment * 3. Implement generateEmbeddingsInternal method */ export class OpenAIEmbeddingProvider extends BaseEmbeddingProvider { protected getProviderType(): string { return 'openai'; } protected getDefaultModel(): string { return PROVIDER_CONFIG.OPENAI_MODEL || 'text-embedding-3-large'; } protected getDefaultMaxBatchSize(): number { return 100; } protected isLocalProvider(): boolean { return false; } async isAvailable(): Promise<boolean> { // Check if OpenAI API key is configured if (!PROVIDER_CONFIG.OPENAI_API_KEY) { console.warn('OpenAI API key not configured'); return false; } // TODO: Implement actual availability check // Example: Try to create a simple embedding return true; } protected async generateEmbeddingsInternal(texts: string[]): Promise<number[][]> { // TODO: Implement OpenAI embedding generation // Example implementation: /* const { OpenAI } = await import('openai'); const client = new OpenAI({ apiKey: PROVIDER_CONFIG.OPENAI_API_KEY, baseURL: PROVIDER_CONFIG.OPENAI_BASE_URL }); const response = await client.embeddings.create({ input: texts, model: this.getModel(), dimensions: this.getDimensions() // For text-embedding-3-* models }); return response.data.map(item => item.embedding); */ throw new Error('OpenAI provider not implemented. Please implement generateEmbeddingsInternal method.'); } estimateCost(tokenCount: number): number { // OpenAI pricing (approximate) const model = this.getModel(); if (model.includes('text-embedding-3-small')) { return tokenCount * 0.00002 / 1000; // $0.02 per 1M tokens } else if (model.includes('text-embedding-3-large')) { return tokenCount * 0.00013 / 1000; // $0.13 per 1M tokens } else { return tokenCount * 0.0001 / 1000; // Ada v2: $0.10 per 1M tokens } } } console.log('✅ OpenAI embedding provider template loaded');

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rinadelph/Agent-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server