Skip to main content
Glama

Agent MCP

getting-started.mdโ€ข13.5 kB
# Getting Started with Agent-MCP Welcome to Agent-MCP! This guide will take you from installation to your first successful multi-agent collaboration workflow. ## ๐Ÿ“‹ Prerequisites ### Required Knowledge - **Basic programming experience** (any language) - **Command line familiarity** (basic terminal commands) - **Git basics** (clone, commit, push) - **AI assistant experience** (Claude Code, Cursor, or similar) ### Required Software - **Python 3.8+** with pip/uv - **Node.js 18+** with npm - **Git** for version control - **AI Coding Assistant** (Claude Code recommended) ### Recommended Setup - **VS Code** with SQLite Viewer extension - **Terminal multiplexer** (tmux or similar) - **OpenAI API key** for embeddings --- ## โšก Quick Install (5 Minutes) ### 1. Clone and Setup ```bash # Clone the repository git clone https://github.com/rinadelph/Agent-MCP.git cd Agent-MCP # Setup environment cp .env.example .env # Edit .env and add your OpenAI API key # Install dependencies uv venv && uv pip install -e . # Configure Claude Code hooks for multi-agent file locking ./setup-claude-hooks.sh ``` ### 2. Start MCP Server ```bash # Start the MCP server (replace with your project path) uv run -m agent_mcp.cli --project-dir /path/to/your/project # You'll see output like: # ๐Ÿค– Admin Token: abc123def456... # ๐Ÿ“ก Server running on http://localhost:8080 # ๐Ÿ“Š Dashboard: Start with 'cd agent_mcp/dashboard && npm run dev' ``` ### 3. Configure Multi-Agent File Locking Agent-MCP requires Claude Code hooks for proper multi-agent coordination. The setup script configures these automatically: ```bash # If you missed it in step 1, run: ./setup-claude-hooks.sh ``` **What this does:** - Configures PreToolUse hooks to check file locks before editing - Configures PostToolUse hooks to log activity and release locks - Creates necessary directories (`.agent-locks`, `.agent-activity`) - Prevents file conflicts when multiple agents work simultaneously **Troubleshooting:** - If you see "MODULE_NOT_FOUND" errors when editing files, the hooks aren't configured properly - Run the setup script again: `./setup-claude-hooks.sh` - Ensure you're running Claude Code from the Agent-MCP project root directory ### 4. Launch Dashboard (Optional but Recommended) ```bash # In a new terminal cd agent_mcp/dashboard npm install # First time only npm run dev # Dashboard available at http://localhost:3847 ``` ### 5. Connect AI Assistant **For Claude Code**, add to your `mcp.json`: ```json { "mcpServers": { "Agent-MCP": { "url": "http://localhost:8080/sse" } } } ``` **๐ŸŽ‰ You're ready!** The server is running and your AI assistant can connect. --- ## ๐ŸŽฏ Your First Multi-Agent Project Let's build a simple task management system to demonstrate Agent-MCP's capabilities. ### Step 1: Create Your Project Directory ```bash mkdir my-task-manager cd my-task-manager # Initialize basic structure touch README.md mkdir src docs tests ``` ### Step 2: Create Your First MCD Create `MCD.md` in your project root: ```markdown # Task Manager MCD ## ๐ŸŽฏ Overview & Goals **Project Vision**: Build a simple task management web application where users can create, update, and delete tasks with a clean, responsive interface. **Target Users**: Individual users who need a simple, distraction-free task tracker **Core Features**: 1. Create tasks with title and description 2. Mark tasks as complete/incomplete 3. Delete tasks 4. Responsive web interface 5. Local storage persistence **Success Criteria**: - Users can add a task in under 5 seconds - Task status updates are immediate - Interface works on mobile and desktop - No data loss on page refresh ## ๐Ÿ—๏ธ Technical Architecture **Frontend**: - Vanilla JavaScript (no framework complexity) - HTML5 with semantic structure - CSS3 with Flexbox/Grid for responsive design - LocalStorage for data persistence **Backend**: - None required (client-side only for simplicity) - Future: Node.js + Express for multi-user features **APIs**: - LocalStorage API for data persistence - Future: REST API for server features **Technology Justification**: - Vanilla JS for simplicity and learning - LocalStorage for immediate functionality without backend complexity - Responsive design for universal accessibility ## ๐Ÿ“‹ Detailed Implementation ### Data Structure ```javascript // Task object structure interface Task { id: string; // UUID for unique identification title: string; // Required, max 100 characters description: string; // Optional, max 500 characters completed: boolean; // Task completion status createdAt: Date; // Creation timestamp updatedAt: Date; // Last modification timestamp } // Storage structure const tasks = []; // Array of Task objects in localStorage ``` ### Core Functions ```javascript // Required functions to implement function createTask(title, description) { } function updateTask(id, updates) { } function deleteTask(id) { } function toggleTaskComplete(id) { } function loadTasks() { } function saveTasks() { } function renderTasks() { } ``` ### HTML Structure ```html <!DOCTYPE html> <html> <head> <title>Task Manager</title> <meta name="viewport" content="width=device-width, initial-scale=1"> </head> <body> <div class="container"> <header> <h1>My Task Manager</h1> </header> <section class="task-form"> <input type="text" id="task-title" placeholder="Task title..."> <textarea id="task-description" placeholder="Description (optional)"></textarea> <button id="add-task">Add Task</button> </section> <section class="task-list"> <div id="tasks-container"> <!-- Tasks rendered here --> </div> </section> </div> </body> </html> ``` ## ๐Ÿ“ File Structure & Organization ``` my-task-manager/ โ”œโ”€โ”€ index.html # Main HTML file โ”œโ”€โ”€ css/ โ”‚ โ””โ”€โ”€ styles.css # All styling โ”œโ”€โ”€ js/ โ”‚ โ”œโ”€โ”€ app.js # Main application logic โ”‚ โ”œโ”€โ”€ storage.js # LocalStorage utilities โ”‚ โ””โ”€โ”€ utils.js # Helper functions โ”œโ”€โ”€ tests/ โ”‚ โ””โ”€โ”€ app.test.html # Simple HTML-based tests โ””โ”€โ”€ docs/ โ””โ”€โ”€ README.md # Usage instructions ``` ## โœ… Task Breakdown & Implementation Plan ### Phase 1: Core Structure (30 minutes) **1.1 HTML Foundation** - Create semantic HTML structure with proper accessibility - Include meta tags for responsive design - **Acceptance**: HTML validates and displays correctly **1.2 CSS Styling** - Implement responsive layout with Flexbox - Create clean, modern styling with good contrast - **Acceptance**: Interface looks good on mobile and desktop ### Phase 2: JavaScript Functionality (45 minutes) **2.1 Data Management** - Implement localStorage utilities for data persistence - Create task CRUD operations - **Acceptance**: Tasks persist across page refreshes **2.2 User Interface** - Implement task creation form handling - Create dynamic task list rendering - Add task completion toggle functionality - **Acceptance**: All core features work without errors ### Phase 3: Polish (15 minutes) **3.1 User Experience** - Add form validation and user feedback - Implement keyboard shortcuts (Enter to add task) - **Acceptance**: Interface is intuitive and responsive ## ๐Ÿ”— Integration & Dependencies **Internal Dependencies**: - app.js depends on storage.js and utils.js - All JS files depend on DOM structure in index.html **External Dependencies**: - None (vanilla JavaScript only) ## ๐Ÿงช Testing & Validation Strategy **Manual Testing**: - Create task and verify it appears - Mark task complete and verify status change - Delete task and verify removal - Refresh page and verify persistence - Test on mobile device for responsiveness **Acceptance Criteria**: - All CRUD operations work correctly - Data persists across browser sessions - No JavaScript errors in console - Interface is fully responsive ``` ### Step 3: Initialize Admin Agent In your AI assistant (Claude Code/Cursor), use your admin token: ``` You are the admin agent for the Task Manager project. Admin Token: "your_admin_token_from_server_startup" TASK: Add the entire MCD to project context - every detail, don't summarize anything. [Paste your complete MCD here] After adding context, create a worker agent to start implementation. ``` ### Step 4: Create Worker Agent When the admin agent creates a worker, initialize it in a new window: ``` You are frontend-worker agent. Your Admin Token: "worker_token_from_admin_response" Look at your assigned tasks and ask the project RAG agent 5-7 critical questions to understand: - What exactly needs to be implemented - What file structure to use - How the task management functionality should work Think critically about each question before asking. AUTO --worker --memory ``` ### Step 5: Watch the Magic Happen The worker agent will: 1. โœ… Query the project RAG for context 2. โœ… Review its assigned tasks 3. โœ… Create the HTML structure 4. โœ… Implement CSS styling 5. โœ… Build JavaScript functionality 6. โœ… Test the implementation 7. โœ… Update task status and document progress ### Step 6: Review and Iterate Use the dashboard to: - ๐Ÿ“Š Monitor agent progress in real-time - ๐Ÿ“‹ Track task completion - ๐Ÿง  View project context and agent communications - ๐Ÿ” Debug any issues that arise --- ## ๐ŸŽ“ Learning Path ### After Your First Project 1. **Study the MCD** - Review how it guided the agent's work 2. **Explore the Dashboard** - Understand the visualizations 3. **Try Variations** - Modify the MCD and see how agents adapt 4. **Join Community** - Share your experience and learn from others ### Next Steps 1. **[The Complete MCD Guide](./mcd-guide.md)** - Master MCD creation 2. **[Agent Coordination Patterns](./agent-patterns.md)** - Learn advanced workflows 3. **[Example MCDs](./example-mcds/README.md)** - Study real-world examples --- ## ๐Ÿ”ง Troubleshooting Common Issues ### โŒ "Cannot find admin token" **Solution**: Check the MCP server startup logs in your terminal. The token is displayed when the server starts. ### โŒ "Agent can't access project context" **Solution**: Make sure the admin agent successfully added the MCD to project context. Check the dashboard's Memory section. ### โŒ "Worker agent doesn't understand tasks" **Solution**: Your MCD might be too vague. Add more specific implementation details and acceptance criteria. ### โŒ "Agents are not coordinating" **Solution**: Ensure you're using the correct tokens (admin vs worker) and that the --worker flag is included in worker initialization. ### โŒ "Dashboard won't load" **Solution**: ```bash # Check Node.js version (needs 18+) node --version # Reinstall dependencies in dashboard directory cd agent_mcp/dashboard rm -rf node_modules package-lock.json npm install npm run dev ``` ### โŒ "MCP server connection failed" **Solution**: Verify the server is running on the correct port and that your AI assistant can reach `http://localhost:8080/sse`. --- ## ๐Ÿ’ก Pro Tips for Success ### 1. Start Simple - Begin with small, focused projects - Master the basic workflow before attempting complex systems - Use the provided examples as templates ### 2. Write Detailed MCDs - The more specific your MCD, the better your results - Include exact file names, function signatures, and acceptance criteria - Don't assume the AI knows your preferences ### 3. Use the Dashboard - Monitor agent activity in real-time - Review project context to ensure it's complete - Watch for patterns in agent coordination ### 4. Iterate and Improve - Start with a basic MCD and refine it - Learn from agent questions and confusion - Update MCDs based on implementation experience ### 5. Join the Community - Share your MCDs and get feedback - Learn from other developers' experiences - Contribute improvements and patterns --- ## ๐Ÿš€ What's Next? ### Expand Your Skills 1. **Create More Complex Projects** - Try building APIs, databases, or full-stack applications 2. **Experiment with Agent Specialization** - Create frontend-only, backend-only, or testing-focused agents 3. **Explore Advanced Patterns** - Use multiple coordinated agents for larger projects ### Contribute to Agent-MCP 1. **Share Your MCDs** - Help others learn from your examples 2. **Report Issues** - Help improve the platform 3. **Suggest Features** - Shape the future of AI collaboration ### Stay Connected - **[Discord Community](https://discord.gg/7Jm7nrhjGn)** - Daily discussions and support - **[GitHub](https://github.com/rinadelph/Agent-MCP)** - Source code and issue tracking - **[Documentation](./README.md)** - Comprehensive guides and references --- **Congratulations! You've successfully set up Agent-MCP and completed your first multi-agent project. You're now ready to build amazing things with coordinated AI intelligence.** **[Continue with The Complete MCD Guide โ†’](./mcd-guide.md)**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rinadelph/Agent-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server