HuggingFaceEmbeddingProvider.ts•4.01 kB
// HuggingFace Embedding Provider
// Users should implement this provider to use HuggingFace embeddings (API or local)
import { BaseEmbeddingProvider } from '../BaseEmbeddingProvider.js';
import { PROVIDER_CONFIG } from '../../../core/config.js';
/**
 * HuggingFace Embedding Provider Implementation
 * Supports both API and local inference via Transformers.js
 * 
 * To implement:
 * For API: Set HF_TOKEN in environment
 * For Local: npm install @xenova/transformers
 * Then implement generateEmbeddingsInternal method
 */
export class HuggingFaceEmbeddingProvider extends BaseEmbeddingProvider {
  private pipeline: any = null;
  
  protected getProviderType(): string {
    return 'huggingface';
  }
  
  protected getDefaultModel(): string {
    return PROVIDER_CONFIG.HUGGINGFACE_MODEL || 'sentence-transformers/all-MiniLM-L6-v2';
  }
  
  protected getDefaultMaxBatchSize(): number {
    return PROVIDER_CONFIG.HUGGINGFACE_USE_LOCAL ? 10 : 100;
  }
  
  protected isLocalProvider(): boolean {
    return PROVIDER_CONFIG.HUGGINGFACE_USE_LOCAL || false;
  }
  
  async isAvailable(): Promise<boolean> {
    if (PROVIDER_CONFIG.HUGGINGFACE_USE_LOCAL) {
      // Check if Transformers.js is available
      try {
        // Check if Transformers.js module can be resolved
        const transformersModule = await import('@xenova/transformers' as string);
        return !!transformersModule;
      } catch (error) {
        console.warn('Transformers.js not installed. Run: npm install @xenova/transformers');
        return false;
      }
    } else {
      // Check if HuggingFace API key is configured
      if (!PROVIDER_CONFIG.HUGGINGFACE_API_KEY) {
        console.warn('HuggingFace API key not configured');
        return false;
      }
      return true;
    }
  }
  
  async warmUp(): Promise<void> {
    if (PROVIDER_CONFIG.HUGGINGFACE_USE_LOCAL) {
      console.log(`🔥 Loading HuggingFace model ${this.getModel()} locally...`);
      // TODO: Initialize the pipeline
      /*
      const { pipeline } = await import('@xenova/transformers');
      this.pipeline = await pipeline('feature-extraction', this.getModel());
      console.log('✅ Model loaded and ready');
      */
    }
  }
  
  protected async generateEmbeddingsInternal(texts: string[]): Promise<number[][]> {
    if (PROVIDER_CONFIG.HUGGINGFACE_USE_LOCAL) {
      // TODO: Implement local inference with Transformers.js
      /*
      if (!this.pipeline) {
        await this.warmUp();
      }
      
      const embeddings: number[][] = [];
      for (const text of texts) {
        const output = await this.pipeline(text, {
          pooling: 'mean',
          normalize: true
        });
        embeddings.push(Array.from(output.data));
      }
      
      return embeddings;
      */
    } else {
      // TODO: Implement API-based inference
      /*
      const response = await fetch(
        `https://api-inference.huggingface.co/models/${this.getModel()}`,
        {
          method: 'POST',
          headers: {
            'Authorization': `Bearer ${PROVIDER_CONFIG.HUGGINGFACE_API_KEY}`,
            'Content-Type': 'application/json'
          },
          body: JSON.stringify({
            inputs: texts,
            options: {
              wait_for_model: true
            }
          })
        }
      );
      
      if (!response.ok) {
        const error = await response.text();
        throw new Error(`HuggingFace error: ${response.status} - ${error}`);
      }
      
      const data = await response.json();
      return data;
      */
    }
    
    throw new Error('HuggingFace provider not implemented. Please implement generateEmbeddingsInternal method.');
  }
  
  estimateCost(tokenCount: number): number {
    if (PROVIDER_CONFIG.HUGGINGFACE_USE_LOCAL) {
      return 0; // Local inference is free
    }
    // HuggingFace Inference API pricing varies by model
    return tokenCount * 0.00006 / 1000; // Approximate
  }
}
console.log('✅ HuggingFace embedding provider template loaded');