Skip to main content
Glama
models.pyโ€ข1.47 kB
"""Response models for PDF retrieval.""" from typing import List, Optional from pydantic import BaseModel, Field class DocumentChunk(BaseModel): """Represents a retrieved document chunk.""" content: str = Field(..., description="The text content of the chunk") document_name: str = Field(..., description="Name of the source PDF document") page_number: Optional[int] = Field(None, description="Page number in the document") metadata: dict = Field(default_factory=dict, description="Additional metadata") class RetrievalResponse(BaseModel): """Response containing retrieved document chunks.""" query: str = Field(..., description="The original search query") chunks: List[DocumentChunk] = Field( default_factory=list, description="List of relevant document chunks" ) total_chunks: int = Field(..., description="Total number of chunks retrieved") model_config = { "json_schema_extra": { "example": { "query": "What is machine learning?", "chunks": [ { "content": "Machine learning is a subset of artificial intelligence...", "document_name": "ai_basics.pdf", "page_number": 5, "metadata": {"source": "ai_basics.pdf"} } ], "total_chunks": 1 } } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rhuanca/pdf_mcpserver'

If you have feedback or need assistance with the MCP directory API, please join our Discord server