Skip to main content
Glama

Redis MCP Server

Official
by redis

vector_search_hash

Conduct a KNN vector similarity search on Redis hash data structures to find nearest neighbors using a query vector, index name, and specified fields for results.

Instructions

Perform a KNN vector similarity search using Redis 8 or later version on vectors stored in hash data structures.

Args: query_vector: List of floats to use as the query vector. index_name: Name of the Redis index. Unless specifically specified, use the default index name. vector_field: Name of the indexed vector field. Unless specifically required, use the default field name k: Number of nearest neighbors to return. return_fields: List of fields to return (optional).

Returns: A list of matched documents or an error message.

Input Schema

NameRequiredDescriptionDefault
index_nameNovector_index
kNo
query_vectorYes
return_fieldsNo
vector_fieldNovector

Input Schema (JSON Schema)

{ "properties": { "index_name": { "default": "vector_index", "title": "Index Name", "type": "string" }, "k": { "default": 5, "title": "K", "type": "integer" }, "query_vector": { "items": {}, "title": "Query Vector", "type": "array" }, "return_fields": { "default": null, "items": {}, "title": "Return Fields", "type": "array" }, "vector_field": { "default": "vector", "title": "Vector Field", "type": "string" } }, "required": [ "query_vector" ], "title": "vector_search_hashArguments", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/redis/mcp-redis'

If you have feedback or need assistance with the MCP directory API, please join our Discord server