Skip to main content
Glama

read_resource

Retrieve content and metadata from a specific resource by providing its URI. This tool reads resources from connected MCP servers for testing and validation purposes.

Instructions

Read a specific resource from the connected MCP server.

Reads a resource by URI and returns its content along with metadata.

Returns: Dictionary with resource content including: - success: True if resource was read successfully - resource: Object with uri, mimeType, and content - metadata: Content size and request timing

Raises: Returns error dict for various failure scenarios: - not_connected: No active connection - resource_not_found: Resource doesn't exist on server - execution_error: Resource read failed

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
uriYesURI of the resource to read (e.g., 'config://settings')

Implementation Reference

  • The core handler implementation for the 'read_resource' MCP tool. Decorated with @mcp.tool for automatic registration. Handles connection verification, resource reading via FastMCP client, content extraction (text or base64-encoded blob), comprehensive error handling (not connected, not found, etc.), progress updates via ctx, logging, statistics, and returns structured JSON-like dict with success, resource data, and metadata.
    @mcp.tool async def read_resource( uri: Annotated[str, "URI of the resource to read (e.g., 'config://settings')"], ctx: Context ) -> dict[str, Any]: """Read a specific resource from the connected MCP server. Reads a resource by URI and returns its content along with metadata. Returns: Dictionary with resource content including: - success: True if resource was read successfully - resource: Object with uri, mimeType, and content - metadata: Content size and request timing Raises: Returns error dict for various failure scenarios: - not_connected: No active connection - resource_not_found: Resource doesn't exist on server - execution_error: Resource read failed """ start_time = time.perf_counter() try: # Verify connection exists client, state = ConnectionManager.require_connection() # User-facing progress update await ctx.info(f"Reading resource '{uri}' from server") # Detailed technical log logger.info( f"Reading resource '{uri}' from server", extra={"resource_uri": uri}, ) # Read the resource # Note: FastMCP Client's read_resource() returns a list directly, not a ReadResourceResult resource_start = time.perf_counter() contents_list = await client.read_resource(uri) resource_elapsed_ms = (time.perf_counter() - resource_start) * 1000 # Increment statistics ConnectionManager.increment_stat("resources_accessed") total_elapsed_ms = (time.perf_counter() - start_time) * 1000 # Extract resource content # FastMCP returns list[TextResourceContents | BlobResourceContents] directly content = None mime_type = None content_size = 0 if isinstance(contents_list, list) and len(contents_list) > 0: content_item = contents_list[0] # Check for different content types if hasattr(content_item, "text"): content = content_item.text content_size = len(content) if content else 0 mime_type = getattr(content_item, "mimeType", "text/plain") elif hasattr(content_item, "blob"): # For binary content, we'll encode as base64 string import base64 content = base64.b64encode(content_item.blob).decode("utf-8") content_size = len(content_item.blob) mime_type = getattr(content_item, "mimeType", "application/octet-stream") else: content = str(content_item) content_size = len(content) # User-facing success update await ctx.info(f"Resource '{uri}' read successfully ({content_size} bytes)") # Detailed technical log logger.info( f"Resource '{uri}' read successfully", extra={ "resource_uri": uri, "content_size": content_size, "duration_ms": resource_elapsed_ms, }, ) return { "success": True, "resource": { "uri": uri, "mimeType": mime_type, "content": content, }, "metadata": { "content_size": content_size, "request_time_ms": round(total_elapsed_ms, 2), "server_url": state.server_url, "connection_statistics": state.statistics, }, } except ConnectionError as e: elapsed_ms = (time.perf_counter() - start_time) * 1000 # User-facing error update await ctx.error(f"Not connected when reading resource '{uri}': {str(e)}") # Detailed technical log logger.error( f"Not connected when reading resource '{uri}': {str(e)}", extra={"resource_uri": uri, "duration_ms": elapsed_ms}, ) return { "success": False, "error": { "error_type": "not_connected", "message": str(e), "details": {"resource_uri": uri}, "suggestion": "Use connect_to_server() to establish a connection first", }, "resource": None, "metadata": { "request_time_ms": round(elapsed_ms, 2), }, } except Exception as e: elapsed_ms = (time.perf_counter() - start_time) * 1000 # Determine error type based on exception message error_type = "execution_error" suggestion = "Check the resource URI and retry" error_msg = str(e).lower() if "not found" in error_msg or "unknown resource" in error_msg or "no resource" in error_msg: error_type = "resource_not_found" suggestion = f"Resource '{uri}' does not exist on the server. Use list_resources() to see available resources" # User-facing error update await ctx.error(f"Failed to read resource '{uri}': {str(e)}") # Detailed technical log logger.error( f"Failed to read resource '{uri}': {str(e)}", extra={ "resource_uri": uri, "error_type": error_type, "duration_ms": elapsed_ms, }, ) # Increment error counter ConnectionManager.increment_stat("errors") return { "success": False, "error": { "error_type": error_type, "message": f"Failed to read resource '{uri}': {str(e)}", "details": { "resource_uri": uri, "exception_type": type(e).__name__, }, "suggestion": suggestion, }, "resource": None, "metadata": { "request_time_ms": round(elapsed_ms, 2), }, }
  • Input schema defined via Annotated type hint for 'uri' parameter and comprehensive docstring describing input/output format, error types, and return structure. Output is dict[str, Any] with success, resource (uri, mimeType, content), metadata.
    async def read_resource( uri: Annotated[str, "URI of the resource to read (e.g., 'config://settings')"], ctx: Context ) -> dict[str, Any]: """Read a specific resource from the connected MCP server. Reads a resource by URI and returns its content along with metadata. Returns: Dictionary with resource content including: - success: True if resource was read successfully - resource: Object with uri, mimeType, and content - metadata: Content size and request timing Raises: Returns error dict for various failure scenarios: - not_connected: No active connection - resource_not_found: Resource doesn't exist on server - execution_error: Resource read failed """
  • Import statement that loads the resources.py module, triggering the @mcp.tool decorator to register 'read_resource' (and list_resources) on the shared FastMCP 'mcp' instance.
    from .tools import connection, tools, resources, prompts, llm

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rdwj/mcp-test-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server