Skip to main content
Glama
prompts.md7.03 kB
# Prompts > Use server-side prompt templates with automatic argument serialization. export const VersionBadge = ({version}) => { return `<code className="version-badge-container">` `<p className="version-badge">` `<span className="version-badge-label">`New in version:  `<code className="version-badge-version">`{version}`</code>` `</p>` `</code>`; }; <VersionBadge version="2.0.0" /> Prompts are reusable message templates exposed by MCP servers. They can accept arguments to generate personalized message sequences for LLM interactions. ## Listing Prompts Use `list_prompts()` to retrieve all available prompt templates: ```python async with client: prompts = await client.list_prompts() # prompts -> list[mcp.types.Prompt] for prompt in prompts: print(f"Prompt: {prompt.name}") print(f"Description: {prompt.description}") if prompt.arguments: print(f"Arguments: {[arg.name for arg in prompt.arguments]}") # Access tags and other metadata if hasattr(prompt, '_meta') and prompt._meta: fastmcp_meta = prompt._meta.get('_fastmcp', {}) print(f"Tags: {fastmcp_meta.get('tags', [])}") ``` ### Filtering by Tags <VersionBadge version="2.11.0" /> You can use the `meta` field to filter prompts based on their tags: ```python async with client: prompts = await client.list_prompts() # Filter prompts by tag analysis_prompts = [ prompt for prompt in prompts if hasattr(prompt, '_meta') and prompt._meta and prompt._meta.get('_fastmcp', {}) and 'analysis' in prompt._meta.get('_fastmcp', {}).get('tags', []) ] print(f"Found {len(analysis_prompts)} analysis prompts") ``` <Note> The `_meta` field is part of the standard MCP specification. FastMCP servers include tags and other metadata within a `_fastmcp` namespace (e.g., `_meta._fastmcp.tags`) to avoid conflicts with user-defined metadata. This behavior can be controlled with the server's `include_fastmcp_meta` setting - when disabled, the `_fastmcp` namespace won't be included. Other MCP server implementations may not provide this metadata structure. </Note> ## Using Prompts ### Basic Usage Request a rendered prompt using `get_prompt()` with the prompt name and arguments: ```python async with client: # Simple prompt without arguments result = await client.get_prompt("welcome_message") # result -> mcp.types.GetPromptResult # Access the generated messages for message in result.messages: print(f"Role: {message.role}") print(f"Content: {message.content}") ``` ### Prompts with Arguments Pass arguments as a dictionary to customize the prompt: ```python async with client: # Prompt with simple arguments result = await client.get_prompt("user_greeting", { "name": "Alice", "role": "administrator" }) # Access the personalized messages for message in result.messages: print(f"Generated message: {message.content}") ``` ## Automatic Argument Serialization <VersionBadge version="2.9.0" /> FastMCP automatically serializes complex arguments to JSON strings as required by the MCP specification. This allows you to pass typed objects directly: ```python from dataclasses import dataclass @dataclass class UserData: name: str age: int async with client: # Complex arguments are automatically serialized result = await client.get_prompt("analyze_user", { "user": UserData(name="Alice", age=30), # Automatically serialized to JSON "preferences": {"theme": "dark"}, # Dict serialized to JSON string "scores": [85, 92, 78], # List serialized to JSON string "simple_name": "Bob" # Strings passed through unchanged }) ``` The client handles serialization using `pydantic_core.to_json()` for consistent formatting. FastMCP servers can automatically deserialize these JSON strings back to the expected types. ### Serialization Examples ```python async with client: result = await client.get_prompt("data_analysis", { # These will be automatically serialized to JSON strings: "config": { "format": "csv", "include_headers": True, "delimiter": "," }, "filters": [ {"field": "age", "operator": ">", "value": 18}, {"field": "status", "operator": "==", "value": "active"} ], # This remains a string: "report_title": "Monthly Analytics Report" }) ``` ## Working with Prompt Results The `get_prompt()` method returns a `GetPromptResult` object containing a list of messages: ```python async with client: result = await client.get_prompt("conversation_starter", {"topic": "climate"}) # Access individual messages for i, message in enumerate(result.messages): print(f"Message {i + 1}:") print(f" Role: {message.role}") print(f" Content: {message.content.text if hasattr(message.content, 'text') else message.content}") ``` ## Raw MCP Protocol Access For access to the complete MCP protocol objects, use the `*_mcp` methods: ```python async with client: # Raw MCP method returns full protocol object prompts_result = await client.list_prompts_mcp() # prompts_result -> mcp.types.ListPromptsResult prompt_result = await client.get_prompt_mcp("example_prompt", {"arg": "value"}) # prompt_result -> mcp.types.GetPromptResult ``` ## Multi-Server Clients When using multi-server clients, prompts are accessible without prefixing (unlike tools): ```python async with client: # Multi-server client # Prompts from any server are directly accessible result1 = await client.get_prompt("weather_prompt", {"city": "London"}) result2 = await client.get_prompt("assistant_prompt", {"query": "help"}) ``` ## Common Prompt Patterns ### System Messages Many prompts generate system messages for LLM configuration: ```python async with client: result = await client.get_prompt("system_configuration", { "role": "helpful assistant", "expertise": "python programming" }) # Typically returns messages with role="system" system_message = result.messages[0] print(f"System prompt: {system_message.content}") ``` ### Conversation Templates Prompts can generate multi-turn conversation templates: ```python async with client: result = await client.get_prompt("interview_template", { "candidate_name": "Alice", "position": "Senior Developer" }) # Multiple messages for a conversation flow for message in result.messages: print(f"{message.role}: {message.content}") ``` <Tip> Prompt arguments and their expected types depend on the specific prompt implementation. Check the server's documentation or use `list_prompts()` to see available arguments for each prompt. </Tip>

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rdwj/mcp-test-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server