# Prompts
> Use server-side prompt templates with automatic argument serialization.
export const VersionBadge = ({version}) => {
return `<code className="version-badge-container">`
`<p className="version-badge">`
`<span className="version-badge-label">`New in version:
`<code className="version-badge-version">`{version}`</code>`
`</p>`
`</code>`;
};
<VersionBadge version="2.0.0" />
Prompts are reusable message templates exposed by MCP servers. They can accept arguments to generate personalized message sequences for LLM interactions.
## Listing Prompts
Use `list_prompts()` to retrieve all available prompt templates:
```python
async with client:
prompts = await client.list_prompts()
# prompts -> list[mcp.types.Prompt]
for prompt in prompts:
print(f"Prompt: {prompt.name}")
print(f"Description: {prompt.description}")
if prompt.arguments:
print(f"Arguments: {[arg.name for arg in prompt.arguments]}")
# Access tags and other metadata
if hasattr(prompt, '_meta') and prompt._meta:
fastmcp_meta = prompt._meta.get('_fastmcp', {})
print(f"Tags: {fastmcp_meta.get('tags', [])}")
```
### Filtering by Tags
<VersionBadge version="2.11.0" />
You can use the `meta` field to filter prompts based on their tags:
```python
async with client:
prompts = await client.list_prompts()
# Filter prompts by tag
analysis_prompts = [
prompt for prompt in prompts
if hasattr(prompt, '_meta') and prompt._meta and
prompt._meta.get('_fastmcp', {}) and
'analysis' in prompt._meta.get('_fastmcp', {}).get('tags', [])
]
print(f"Found {len(analysis_prompts)} analysis prompts")
```
<Note>
The `_meta` field is part of the standard MCP specification. FastMCP servers include tags and other metadata within a `_fastmcp` namespace (e.g., `_meta._fastmcp.tags`) to avoid conflicts with user-defined metadata. This behavior can be controlled with the server's `include_fastmcp_meta` setting - when disabled, the `_fastmcp` namespace won't be included. Other MCP server implementations may not provide this metadata structure.
</Note>
## Using Prompts
### Basic Usage
Request a rendered prompt using `get_prompt()` with the prompt name and arguments:
```python
async with client:
# Simple prompt without arguments
result = await client.get_prompt("welcome_message")
# result -> mcp.types.GetPromptResult
# Access the generated messages
for message in result.messages:
print(f"Role: {message.role}")
print(f"Content: {message.content}")
```
### Prompts with Arguments
Pass arguments as a dictionary to customize the prompt:
```python
async with client:
# Prompt with simple arguments
result = await client.get_prompt("user_greeting", {
"name": "Alice",
"role": "administrator"
})
# Access the personalized messages
for message in result.messages:
print(f"Generated message: {message.content}")
```
## Automatic Argument Serialization
<VersionBadge version="2.9.0" />
FastMCP automatically serializes complex arguments to JSON strings as required by the MCP specification. This allows you to pass typed objects directly:
```python
from dataclasses import dataclass
@dataclass
class UserData:
name: str
age: int
async with client:
# Complex arguments are automatically serialized
result = await client.get_prompt("analyze_user", {
"user": UserData(name="Alice", age=30), # Automatically serialized to JSON
"preferences": {"theme": "dark"}, # Dict serialized to JSON string
"scores": [85, 92, 78], # List serialized to JSON string
"simple_name": "Bob" # Strings passed through unchanged
})
```
The client handles serialization using `pydantic_core.to_json()` for consistent formatting. FastMCP servers can automatically deserialize these JSON strings back to the expected types.
### Serialization Examples
```python
async with client:
result = await client.get_prompt("data_analysis", {
# These will be automatically serialized to JSON strings:
"config": {
"format": "csv",
"include_headers": True,
"delimiter": ","
},
"filters": [
{"field": "age", "operator": ">", "value": 18},
{"field": "status", "operator": "==", "value": "active"}
],
# This remains a string:
"report_title": "Monthly Analytics Report"
})
```
## Working with Prompt Results
The `get_prompt()` method returns a `GetPromptResult` object containing a list of messages:
```python
async with client:
result = await client.get_prompt("conversation_starter", {"topic": "climate"})
# Access individual messages
for i, message in enumerate(result.messages):
print(f"Message {i + 1}:")
print(f" Role: {message.role}")
print(f" Content: {message.content.text if hasattr(message.content, 'text') else message.content}")
```
## Raw MCP Protocol Access
For access to the complete MCP protocol objects, use the `*_mcp` methods:
```python
async with client:
# Raw MCP method returns full protocol object
prompts_result = await client.list_prompts_mcp()
# prompts_result -> mcp.types.ListPromptsResult
prompt_result = await client.get_prompt_mcp("example_prompt", {"arg": "value"})
# prompt_result -> mcp.types.GetPromptResult
```
## Multi-Server Clients
When using multi-server clients, prompts are accessible without prefixing (unlike tools):
```python
async with client: # Multi-server client
# Prompts from any server are directly accessible
result1 = await client.get_prompt("weather_prompt", {"city": "London"})
result2 = await client.get_prompt("assistant_prompt", {"query": "help"})
```
## Common Prompt Patterns
### System Messages
Many prompts generate system messages for LLM configuration:
```python
async with client:
result = await client.get_prompt("system_configuration", {
"role": "helpful assistant",
"expertise": "python programming"
})
# Typically returns messages with role="system"
system_message = result.messages[0]
print(f"System prompt: {system_message.content}")
```
### Conversation Templates
Prompts can generate multi-turn conversation templates:
```python
async with client:
result = await client.get_prompt("interview_template", {
"candidate_name": "Alice",
"position": "Senior Developer"
})
# Multiple messages for a conversation flow
for message in result.messages:
print(f"{message.role}: {message.content}")
```
<Tip>
Prompt arguments and their expected types depend on the specific prompt implementation. Check the server's documentation or use `list_prompts()` to see available arguments for each prompt.
</Tip>