implementation_plan.md•4.33 kB
# Sectional MCP Panel - Implementation Plan
This document outlines the detailed implementation plan for the Sectional MCP Panel project, breaking down the development process into specific tasks with dependencies and sequence.
## Phase 1: Project Setup and Core Infrastructure
### 1.1 Development Environment Setup
- Create project directory structure
- Set up Python virtual environment
- Install core dependencies (FastAPI, SQLite, Docker SDK, etc.)
- Create basic Docker configuration for development
- Set up version control
### 1.2 State Database Implementation
- Design database schema for:
- Panel configuration
- Sections
- Servers
- Runtime state
- Audit logs
- Implement database initialization
- Create database access layer
- Implement basic CRUD operations
- Add migration support for future schema changes
### 1.3 Configuration System Foundation
- Define JSON schema for configuration
- Implement configuration loading and parsing
- Create validation logic
- Implement hierarchical resolution (Global → Section → Server)
- Add configuration persistence to database
## Phase 2: Core Engine Components
### 2.1 Runtime Engine Implementation
- Implement Docker client integration
- Create container management functions:
- Container creation
- Container start/stop
- Resource limit application
- Implement process execution fallback
- Add status monitoring for running servers
- Create logging capture mechanism
### 2.2 Orchestration Engine Implementation
- Implement server lifecycle management:
- Start/stop/restart individual servers
- Status tracking
- Create task queue for asynchronous operations
- Implement concurrency control for group operations
- Add section-level operations
- Implement error handling and recovery
## Phase 3: API and Interface
### 3.1 API Layer Implementation
- Set up FastAPI framework
- Implement core API endpoints:
- Section management (CRUD)
- Server management (CRUD)
- Server operations (start/stop/restart)
- Section operations (start/stop/restart)
- Status retrieval
- Configuration management
- Add request validation
- Implement basic authentication (API key)
- Add simple authorization
- Create API documentation (Swagger/OpenAPI)
### 3.2 Web UI Development
- Create basic HTML/CSS structure
- Implement dashboard layout
- Add section and server visualization
- Create control interfaces (start/stop/restart)
- Implement configuration editor
- Add log viewer
- Connect UI to API endpoints
## Phase 4: Integration and Testing
### 4.1 Component Integration
- Connect all components:
- API → Orchestration Engine
- Orchestration Engine → Runtime Engine
- Configuration System → All components
- Implement end-to-end workflows
- Add error handling across component boundaries
### 4.2 Testing
- Create unit tests for critical components
- Implement integration tests for workflows
- Add test fixtures and mocks
- Create test documentation
### 4.3 Deployment Packaging
- Create Docker container for Panel service
- Implement configuration for production deployment
- Add startup/shutdown scripts
- Create deployment documentation
## Phase 5: Documentation and Finalization
### 5.1 User Documentation
- Create installation guide
- Write user manual
- Document API endpoints
- Add configuration reference
- Create troubleshooting guide
### 5.2 Final Testing and Refinement
- Perform end-to-end testing
- Fix identified issues
- Optimize performance
- Refine user interface
- Ensure all documentation is complete
## Implementation Timeline (Estimated)
- **Phase 1**: 1-2 weeks
- **Phase 2**: 2-3 weeks
- **Phase 3**: 2-3 weeks
- **Phase 4**: 1-2 weeks
- **Phase 5**: 1 week
Total estimated time: 7-11 weeks for a complete implementation
## Dependencies and Requirements
- Python 3.8+
- Docker Engine
- SQLite (initial database)
- FastAPI framework
- Docker SDK for Python
- Basic web development tools (HTML/CSS/JavaScript)
## Success Criteria
The implementation will be considered successful when:
1. All core components are functioning as specified
2. The Panel can manage sections and servers through the API
3. Container-based server execution works reliably
4. The web UI provides basic management capabilities
5. Documentation is complete and accurate
6. The system can be deployed as a Docker container