Skip to main content
Glama

Fal.ai MCP Server

by raveenb
test_apis.py1.18 kB
#!/usr/bin/env python3 import asyncio import os import sys import time sys.path.insert(0, 'src') os.environ['FAL_KEY'] = '5ba82550-c252-4430-90d9-68adbaeb731d:b2107824b055c4fd157c1d2ac0b0fccc' from fal_mcp_server.server import call_tool async def test_apis(): print("Testing Fal.ai MCP Server - Async & Queue APIs") print("=" * 60) # Test 1: Image Generation (Async API) print(" 1. Testing Image Generation (should use async):") start = time.time() result = await call_tool('generate_image', { 'prompt': 'A simple test pattern', 'model': 'flux_schnell' }) print(f" Time: {time.time() - start:.2f}s") print(f" Result: {result[0].text[:150]}...") # Test 2: Music Generation (Queue API) print(" 2. Testing Music Generation (should use queue):") start = time.time() result = await call_tool('generate_music', { 'prompt': 'Short test music', 'duration_seconds': 5 }) print(f" Time: {time.time() - start:.2f}s") print(f" Result: {result[0].text[:150]}...") print(" ✅ Tests completed! Check for '(async)' and '(via queue)' markers.") asyncio.run(test_apis())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/raveenb/fal-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server