Skip to main content
Glama

Files-DB-MCP

by randomm
performance_optimization.md8.69 kB
# Performance Optimization Framework This template provides a structured approach for identifying and addressing performance issues in software systems. ## Performance Assessment Process ### 1. Establish Baseline 1. **Define Metrics**: Identify key performance indicators (KPIs) 2. **Measurement Setup**: Configure monitoring and profiling tools 3. **Load Testing**: Design realistic test scenarios 4. **Benchmark**: Capture baseline metrics 5. **Document**: Record environment details and configurations ### 2. Identify Bottlenecks 1. **Data Collection**: Gather metrics under various conditions 2. **Analysis**: Determine performance limiting factors 3. **Prioritization**: Rank issues by impact and effort to fix 4. **Root Cause**: Dig deeper to find underlying causes 5. **Documentation**: Record findings with evidence ### 3. Optimize 1. **Plan**: Develop optimization strategy 2. **Implement**: Apply targeted improvements 3. **Measure**: Verify impact against baseline 4. **Iterate**: Continue until performance goals met 5. **Document**: Record changes and their effects ## Performance Metrics and Benchmarks ### System-Level Metrics - **CPU Usage**: Overall utilization, per-process, per-thread - **Memory Usage**: Total, per-process, memory leaks, GC behavior - **Disk I/O**: Read/write operations, latency, throughput - **Network**: Throughput, latency, packet loss, connection count ### Application-Level Metrics - **Response Time**: Average, percentiles (p50, p90, p95, p99) - **Throughput**: Requests or transactions per second - **Error Rate**: Percentage of failed operations - **Concurrency**: Number of simultaneous users/connections - **Resource Utilization**: How efficiently resources are used ### Database Metrics - **Query Execution Time**: Duration of queries - **Index Usage**: Hit ratio, scan vs. seek operations - **Connection Pool**: Utilization, wait time - **Lock Contention**: Wait time, deadlocks - **Cache Performance**: Hit ratio, eviction rate ## Profiling Techniques ### CPU Profiling 1. **Sampling Profiler**: Periodically sample call stack 2. **Instrumentation Profiler**: Add timing code to functions 3. **Flame Graphs**: Visualize call stack and CPU time 4. **Hot Spot Analysis**: Identify CPU-intensive operations ### Memory Profiling 1. **Heap Snapshots**: Capture memory usage at a point in time 2. **Allocation Profiling**: Track object creation and destruction 3. **Leak Detection**: Identify unreleased resources 4. **Garbage Collection Analysis**: Understand GC behavior ### I/O Profiling 1. **Disk I/O Monitoring**: Track read/write operations 2. **Network Monitoring**: Analyze packet flow and delays 3. **Database Query Analysis**: Examine query plans and execution 4. **Resource Contention**: Identify lock and wait conditions ## Common Optimization Patterns ### Algorithm Optimization 1. **Complexity Reduction**: Improve algorithmic efficiency (O(n²) → O(n log n)) 2. **Memoization**: Cache expensive function results 3. **Lazy Evaluation**: Compute values only when needed 4. **Parallel Processing**: Utilize multiple cores effectively 5. **Batch Processing**: Combine multiple operations ### Memory Optimization 1. **Object Pooling**: Reuse objects instead of creating new ones 2. **Memory-Efficient Data Structures**: Choose appropriate structures 3. **Reduce Allocations**: Minimize temporary object creation 4. **Appropriate Data Types**: Use size-appropriate types 5. **Compression**: Reduce memory footprint with compression ### I/O Optimization 1. **Caching**: Store frequently accessed data in memory 2. **Buffering**: Combine multiple I/O operations 3. **Asynchronous I/O**: Non-blocking operations 4. **Connection Pooling**: Reuse database connections 5. **Data Locality**: Organize data to improve access patterns ## Database Query Optimization ### Query Analysis 1. **Explain Plans**: Analyze how queries are executed 2. **Slow Query Logs**: Identify problematic queries 3. **Query Profiling**: Measure query performance 4. **Index Analysis**: Evaluate index usage and effectiveness ### Optimization Techniques 1. **Indexing**: Create appropriate indexes 2. **Query Rewriting**: Restructure queries for efficiency 3. **Denormalization**: Strategic duplication for performance 4. **Partitioning**: Divide large tables 5. **Connection Management**: Optimize connection pooling ## Frontend Performance Improvements ### Loading Performance 1. **Bundle Optimization**: Minimize and split JavaScript bundles 2. **Resource Minification**: Minify CSS and JavaScript 3. **Image Optimization**: Compress and properly size images 4. **Lazy Loading**: Defer non-critical resource loading 5. **Caching Strategy**: Implement effective browser caching ### Rendering Performance 1. **Critical Rendering Path**: Optimize resources loading order 2. **Virtual DOM Efficiency**: Minimize unnecessary renders 3. **Code Splitting**: Load code only when needed 4. **Web Workers**: Offload CPU-intensive tasks 5. **Animation Optimization**: Use GPU-accelerated properties ## Load Testing Methodologies ### Test Types 1. **Load Test**: Performance under expected load 2. **Stress Test**: Performance under extreme conditions 3. **Endurance Test**: Performance over extended periods 4. **Spike Test**: Performance under sudden load increases 5. **Scalability Test**: Performance as system scales ### Testing Process 1. **Scenario Definition**: Define realistic user journeys 2. **Test Environment**: Set up representative environment 3. **Execution**: Run tests with appropriate tool 4. **Monitoring**: Capture detailed metrics during test 5. **Analysis**: Identify bottlenecks and limitations ## Language-Specific Optimization ### Python ```python # Before optimization def calculate_sum(numbers): result = 0 for num in numbers: result += num return result # After optimization (using built-in sum) def calculate_sum(numbers): return sum(numbers) # Before optimization def process_data(data): result = [] for item in data: if item > 0: result.append(item * 2) return result # After optimization (using list comprehension) def process_data(data): return [item * 2 for item in data if item > 0] ``` ### JavaScript ```javascript // Before optimization function findUser(users, id) { for (let i = 0; i < users.length; i++) { if (users[i].id === id) { return users[i]; } } return null; } // After optimization function findUser(users, id) { return users.find(user => user.id === id) || null; } // Before optimization (creating many objects) function processItems(items) { const results = []; for (let i = 0; i < items.length; i++) { const newItem = { ...items[i], processed: true }; results.push(newItem); } return results; } // After optimization (reusing objects where possible) function processItems(items) { return items.map(item => ({ ...item, processed: true })); } ``` ### SQL ```sql -- Before optimization SELECT * FROM orders WHERE customer_id = 123; -- After optimization SELECT order_id, order_date, total FROM orders WHERE customer_id = 123; -- Before optimization SELECT o.order_id, c.name FROM orders o, customers c WHERE o.customer_id = c.customer_id AND o.order_date > '2023-01-01'; -- After optimization SELECT o.order_id, c.name FROM orders o INNER JOIN customers c ON o.customer_id = c.customer_id WHERE o.order_date > '2023-01-01'; ``` ## Performance Optimization Checklist ### General - [ ] Established performance baselines - [ ] Identified critical performance metrics - [ ] Profiled application under realistic load - [ ] Applied appropriate optimization patterns - [ ] Verified improvements against baseline - [ ] Documented optimizations and their impact ### Backend - [ ] Optimized database queries - [ ] Implemented appropriate caching - [ ] Improved algorithm efficiency - [ ] Optimized I/O operations - [ ] Enhanced memory usage - [ ] Implemented connection pooling - [ ] Applied asynchronous processing where appropriate ### Frontend - [ ] Minimized bundle size - [ ] Optimized images and other assets - [ ] Implemented lazy loading - [ ] Improved rendering performance - [ ] Applied proper caching strategies - [ ] Reduced network requests ### Database - [ ] Created appropriate indexes - [ ] Optimized query structure - [ ] Applied denormalization where beneficial - [ ] Implemented database-level caching - [ ] Optimized transaction management ### Infrastructure - [ ] Scaled resources appropriately - [ ] Optimized server configurations - [ ] Implemented load balancing - [ ] Applied CDN for static assets - [ ] Configured appropriate timeouts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/randomm/files-db-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server