Skip to main content
Glama

SQL Query MCP Server

README.mdβ€’2.24 kB
# πŸš€ MCP-Powered Streamlit Dashboard with Ollama + PostgreSQL A modern data analysis tool that lets you: - Query your PostgreSQL database with natural language - Run SQL manually or generate it using LLMs (Ollama) - Analyze data with charts, statistics, and export to CSV --- ## 🧠 Prompt-to-SQL Flow ```mermaid graph TD A[πŸ§‘ User types a data question] --> B[Streamlit sends prompt to Ollama API] B --> C[Ollama generates SQL query as text] C --> D[Streamlit extracts the SQL] D --> E[Streamlit sends SQL to MCP server] E --> F[MCP executes query on PostgreSQL] F --> G[Results returned to Streamlit] G --> H[πŸ“Š Results shown + Chart + CSV Export] ``` --- ## πŸ“¦ Architecture - **Streamlit** – UI + charting - **MCP (FastMCP)** – Tools/resources for SQL query and table listing - **PostgreSQL** – Stores your company data - **Ollama** – LLM that translates natural language prompts to SQL --- ## πŸ“Œ Features βœ… Natural language β†’ SQL βœ… Charting (bar/line/time series) βœ… CSV download βœ… Statistical summary βœ… Prompt explainability with raw output βœ… Auto-detect date/time fields βœ… LLM integration with `llama3` (configurable) --- ## πŸ› οΈ Getting Started ```bash git clone <this-repo> cd postgres-mcp-server docker-compose up --build ``` - Access UI: [http://localhost:8501](http://localhost:8501) - MCP API: [http://localhost:3333/mcp](http://localhost:3333/mcp) --- ## βš™οΈ Env Configuration ```env MCP_API_URL=http://mcp-server:3333/mcp OLLAMA_URL=http://ollama:11434/api/generate ``` --- ## πŸ“€ Prompt Example > β€œList departments with average salary > 50000” πŸ‘‰ Translated to SQL: ```sql SELECT department, AVG(salary) FROM employees GROUP BY department HAVING AVG(salary) > 50000; ``` --- Why is this a good use case for MCP? πŸ”— MCP makes it dead simple to expose structured tools like SQL queries to LLMs. 🎯 Agents can discover and call your tools without hardcoding logic. πŸ’¬ You get the best of both worlds β€” interpretability, flexibility, and control. Whether you're building internal tools, research dashboards, or intelligent agents β€” this pattern is reusable, secure, and 100% local. ## πŸ“„ License MIT

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rajeevchandra/mcp-ollama-postgres'

If you have feedback or need assistance with the MCP directory API, please join our Discord server