Skip to main content
Glama

Coupler Analytics

by railsware
schema.ts1.61 kB
import { z } from 'zod' import { zodToJsonSchema } from 'zod-to-json-schema' export const zodInputSchema = z.object({ dataflowId: z.string() .min(1, 'dataflowId is required.') .regex(/^\S+$/, 'dataflowId must not be empty.') .describe('The ID of the data flow with a successful run.') }).strict() export const inputSchema = zodToJsonSchema(zodInputSchema) const zodOutputSchema = z.object({ dataflow: z.object({ id: z.string().describe('The ID of the data flow.'), name: z.string().describe('The name of the data flow.'), last_successful_execution_id: z.string().describe('The ID of the last successful run (execution) of the data flow.'), schedule: z.string().nullish().describe('The schedule of the data flow. Crontab format.'), sources: z.array(z.object({ id: z.string().describe('The ID of the source.'), name: z.string().describe('The name of the source.'), type: z.string().describe('The type of the source.'), params_configured: z.boolean().describe('Whether the source params are configured.'), enabled: z.boolean().describe('Whether the source is enabled.'), data_connections_count: z.number().int().nonnegative().describe('The number of data connections for the source.'), last_success_run_at: z.string().nullish().describe('The date and time of the last successful run of the source. ISO 8601 format.'), error_details: z.string().nullish().describe('The error details of the source.'), })).describe('The sources of the data flow.'), }).strict() }) export const outputSchema = zodToJsonSchema(zodOutputSchema)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/railsware/coupler-io-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server