Skip to main content
Glama
getActivityLaps.ts4.85 kB
import { z } from "zod"; import { getActivityLaps as getActivityLapsClient } from "../stravaClient.js"; import { formatDuration } from "../server.js"; // Import helper const name = "get-activity-laps"; const description = ` Retrieves detailed lap data for a specific Strava activity. Use Cases: - Get complete lap data including timestamps, speeds, and metrics - Access raw values for detailed analysis or visualization - Extract specific lap metrics for comparison or tracking Parameters: - id (required): The unique identifier of the Strava activity. Output Format: Returns both a human-readable summary and complete JSON data for each lap, including: 1. A text summary with formatted metrics 2. Raw lap data containing all fields from the Strava API: - Unique lap ID and indices - Timestamps (start_date, start_date_local) - Distance and timing metrics - Speed metrics (average and max) - Performance metrics (heart rate, cadence, power if available) - Elevation data - Resource state information - Activity and athlete references Notes: - Requires activity:read scope for public/followers activities, activity:read_all for private activities - Returns complete data as received from Strava API without omissions - All numeric values are preserved in their original precision `; const inputSchema = z.object({ id: z.union([z.number(), z.string()]).describe("The identifier of the activity to fetch laps for."), }); type GetActivityLapsInput = z.infer<typeof inputSchema>; export const getActivityLapsTool = { name, description, inputSchema, execute: async ({ id }: GetActivityLapsInput) => { const token = process.env.STRAVA_ACCESS_TOKEN; if (!token) { console.error("Missing STRAVA_ACCESS_TOKEN environment variable."); return { content: [{ type: "text" as const, text: "Configuration error: Missing Strava access token." }], isError: true }; } try { console.error(`Fetching laps for activity ID: ${id}...`); const laps = await getActivityLapsClient(token, id); if (!laps || laps.length === 0) { return { content: [{ type: "text" as const, text: `✅ No laps found for activity ID: ${id}` }] }; } // Generate human-readable summary const lapSummaries = laps.map(lap => { const details = [ `Lap ${lap.lap_index}: ${lap.name || 'Unnamed Lap'}`, ` Time: ${formatDuration(lap.elapsed_time)} (Moving: ${formatDuration(lap.moving_time)})`, ` Distance: ${(lap.distance / 1000).toFixed(2)} km`, ` Avg Speed: ${lap.average_speed ? (lap.average_speed * 3.6).toFixed(2) + ' km/h' : 'N/A'}`, ` Max Speed: ${lap.max_speed ? (lap.max_speed * 3.6).toFixed(2) + ' km/h' : 'N/A'}`, lap.total_elevation_gain ? ` Elevation Gain: ${lap.total_elevation_gain.toFixed(1)} m` : null, lap.average_heartrate ? ` Avg HR: ${lap.average_heartrate.toFixed(1)} bpm` : null, lap.max_heartrate ? ` Max HR: ${lap.max_heartrate} bpm` : null, lap.average_cadence ? ` Avg Cadence: ${lap.average_cadence.toFixed(1)} rpm` : null, lap.average_watts ? ` Avg Power: ${lap.average_watts.toFixed(1)} W ${lap.device_watts ? '(Sensor)' : ''}` : null, ]; return details.filter(d => d !== null).join('\n'); }); const summaryText = `Activity Laps Summary (ID: ${id}):\n\n${lapSummaries.join('\n\n')}`; // Add raw data section const rawDataText = `\n\nComplete Lap Data:\n${JSON.stringify(laps, null, 2)}`; console.error(`Successfully fetched ${laps.length} laps for activity ${id}`); return { content: [ { type: "text" as const, text: summaryText }, { type: "text" as const, text: rawDataText } ] }; } catch (error) { const errorMessage = error instanceof Error ? error.message : String(error); console.error(`Error fetching laps for activity ${id}: ${errorMessage}`); const userFriendlyMessage = errorMessage.includes("Record Not Found") || errorMessage.includes("404") ? `Activity with ID ${id} not found.` : `An unexpected error occurred while fetching laps for activity ${id}. Details: ${errorMessage}`; return { content: [{ type: "text" as const, text: `❌ ${userFriendlyMessage}` }], isError: true }; } } };

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/r-huijts/strava-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server