Skip to main content
Glama
qubaomingg

@qubaomingg/stock-mcp

get-stock-data

Retrieve historical stock price data for any symbol with customizable time intervals and data output sizes to support investment analysis and market research.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
intervalNoTime interval between data points (default: 5min)
outputsizeNoAmount of data to return (compact: latest 100 data points, full: up to 20 years of data)
symbolYesStock symbol (e.g., IBM, AAPL)

Implementation Reference

  • MCP tool handler for 'get-stock-data' that invokes getStockData helper with provided parameters and returns formatted text content or error.
    async ({ symbol, interval = '5min', outputsize = 'compact' }) => { try { const data = await getStockData(symbol, interval, outputsize); return { content: [{ type: 'text', text: data }], }; } catch (error) { return { content: [ { type: 'text', text: `Error fetching stock data: ${ error instanceof Error ? error.message : String(error) }`, }, ], isError: true, }; } },
  • Input schema using Zod for tool parameters: symbol (string), interval (enum optional), outputsize (enum optional).
    { symbol: z.string().describe('Stock symbol (e.g., IBM, AAPL)'), interval: z .enum(['1min', '5min', '15min', '30min', '60min']) .optional() .describe('Time interval between data points (default: 5min)'), outputsize: z .enum(['compact', 'full']) .optional() .describe( 'Amount of data to return (compact: latest 100 data points, full: up to 20 years of data)', ), },
  • src/index.ts:49-84 (registration)
    Full registration of the 'get-stock-data' tool on the MCP server with name, input schema, and handler function.
    server.tool( 'get-stock-data', { symbol: z.string().describe('Stock symbol (e.g., IBM, AAPL)'), interval: z .enum(['1min', '5min', '15min', '30min', '60min']) .optional() .describe('Time interval between data points (default: 5min)'), outputsize: z .enum(['compact', 'full']) .optional() .describe( 'Amount of data to return (compact: latest 100 data points, full: up to 20 years of data)', ), }, async ({ symbol, interval = '5min', outputsize = 'compact' }) => { try { const data = await getStockData(symbol, interval, outputsize); return { content: [{ type: 'text', text: data }], }; } catch (error) { return { content: [ { type: 'text', text: `Error fetching stock data: ${ error instanceof Error ? error.message : String(error) }`, }, ], isError: true, }; } }, );
  • Primary helper function implementing the core logic: constructs Alpha Vantage API URL for intraday or daily time series, fetches data via axios, validates response, and formats output using formatTimeSeriesData.
    export async function getStockData(symbol: string | string[], interval: string | string[] | 'daily', outputsize: string = 'compact'): Promise<string> { try { // Ensure parameters are strings, not arrays const symbolStr = Array.isArray(symbol) ? symbol[0] : symbol; const intervalStr = Array.isArray(interval) ? interval[0] : interval; const outputsizeStr = Array.isArray(outputsize) ? outputsize[0] : outputsize; let url: string; let timeSeriesKey: string; if (intervalStr === 'daily') { // Use TIME_SERIES_DAILY endpoint url = `${BASE_URL}?function=TIME_SERIES_DAILY&symbol=${symbolStr}&outputsize=${outputsizeStr}&apikey=${API_KEY}`; timeSeriesKey = 'Time Series (Daily)'; } else { // Use TIME_SERIES_INTRADAY endpoint url = `${BASE_URL}?function=TIME_SERIES_INTRADAY&symbol=${symbolStr}&interval=${intervalStr}&outputsize=${outputsizeStr}&apikey=${API_KEY}`; timeSeriesKey = `Time Series (${intervalStr})`; } const response = await axios.get(url); // Check for error messages from Alpha Vantage if (response.data['Error Message']) { throw new Error(response.data['Error Message']); } if (response.data['Note']) { console.warn('API Usage Note:', response.data['Note']); } // Extract the time series data const timeSeries = response.data[timeSeriesKey]; if (!timeSeries) { throw new Error('No time series data found in the response'); } // Format the data const formattedData = formatTimeSeriesData(timeSeries, symbolStr, intervalStr); return formattedData; } catch (error) { if (axios.isAxiosError(error)) { throw new Error(`API request failed: ${error.message}`); } throw error; } }
  • Supporting utility that formats raw time series data into a human-readable string, showing OHLCV for the 10 most recent data points.
    function formatTimeSeriesData(timeSeries: any, symbol: string, interval: string | 'daily'): string { const dates = Object.keys(timeSeries).sort().reverse(); // Most recent first let result = `Stock data for ${symbol.toUpperCase()} (${interval === 'daily' ? 'Daily' : interval} intervals):\n\n`; // Limit to 10 data points to avoid overwhelming responses const limitedDates = dates.slice(0, 10); for (const date of limitedDates) { const data = timeSeries[date]; result += `${date}:\n`; result += ` Open: ${data['1. open']}\n`; result += ` High: ${data['2. high']}\n`; result += ` Low: ${data['3. low']}\n`; result += ` Close: ${data['4. close']}\n`; result += ` Volume: ${data['5. volume']}\n\n`; } if (dates.length > 10) { result += `... and ${dates.length - 10} more data points available.\n`; } return result; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qubaomingg/stock-analysis-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server