Skip to main content
Glama

MemOS-MCP

by qinshu1109
test_vec_db.py1.94 kB
from memos.configs.vec_db import ( BaseVecDBConfig, QdrantVecDBConfig, VectorDBConfigFactory, ) from tests.utils import ( check_config_base_class, check_config_instantiation_invalid, check_config_instantiation_valid, ) def test_base_vec_db_config(): check_config_base_class( BaseVecDBConfig, required_fields=[ "collection_name", ], optional_fields=[ "vector_dimension", "distance_metric", ], ) check_config_instantiation_valid( BaseVecDBConfig, { "collection_name": "test_collection", "vector_dimension": 768, "distance_metric": "cosine", }, ) check_config_instantiation_invalid(BaseVecDBConfig) def test_qdrant_vec_db_config(): check_config_base_class( QdrantVecDBConfig, required_fields=[ "collection_name", ], optional_fields=["vector_dimension", "distance_metric", "host", "port", "path"], ) check_config_instantiation_valid( QdrantVecDBConfig, { "collection_name": "test_collection", "vector_dimension": 768, "distance_metric": "cosine", "path": "/custom/path", }, ) check_config_instantiation_invalid(QdrantVecDBConfig) def test_vector_db_config_factory(): check_config_base_class( VectorDBConfigFactory, required_fields=[ "backend", "config", ], optional_fields=[], ) check_config_instantiation_valid( VectorDBConfigFactory, { "backend": "qdrant", "config": { "collection_name": "test_collection", "vector_dimension": 768, "distance_metric": "cosine", }, }, ) check_config_instantiation_invalid(VectorDBConfigFactory)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server