Skip to main content
Glama

MemOS-MCP

by qinshu1109
item.py1.43 kB
"""Defines vector database item types.""" import uuid from typing import Any from pydantic import BaseModel, ConfigDict, Field, field_validator class VecDBItem(BaseModel): """Represents a single item in the vector database. This serves as a standardized format for vector database items across different vector database implementations (Qdrant, FAISS, Weaviate, etc.). """ id: str = Field(default=str(uuid.uuid4()), description="Unique identifier for the item") vector: list[float] | None = Field(default=None, description="Embedding vector") payload: dict[str, Any] | None = Field( default=None, description="Additional payload for filtering/retrieval" ) score: float | None = Field( default=None, description="Similarity score (used in search results)" ) model_config = ConfigDict(extra="forbid") @field_validator("id") @classmethod def validate_id(cls, v): """Validate that ID is a valid UUID.""" if not isinstance(v, str) or not uuid.UUID(v, version=4): raise ValueError("ID must be a valid UUID string") return v @classmethod def from_dict(cls, data: dict[str, Any]) -> "VecDBItem": """Create VecDBItem from dictionary.""" return cls(**data) def to_dict(self) -> dict[str, Any]: """Convert to dictionary format.""" return self.model_dump(exclude_none=True)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server