hello_world.py•3.06 kB
from memos import log
logger = log.get_logger(__name__)
def memos_hello_world() -> str:
logger.info("memos_hello_world function called.")
return "Hello world from memos!"
def memos_chend_hello_world() -> str:
logger.info("memos_chend_hello_world function called.")
return "Hello world from memos-chend!"
def memos_wanghy_hello_world() -> str:
logger.info("memos_wanghy_hello_world function called.")
return "Hello world from memos-wanghy!"
def memos_niusm_hello_world() -> str:
logger.info("memos_niusm_hello_world function called.")
return "Hello world from memos-niusm!"
def memos_huojh_hello_world(arr: list) -> list:
logger.info("memos_huojh_hello_world function called.")
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return [*memos_huojh_hello_world(left), pivot, *memos_huojh_hello_world(right)]
def memos_dany_hello_world(para_1: int, para_2: str) -> str:
logger.info(f"logger.info: para_1 is {para_1}")
logger.debug(f"logger.debug: para_2 is {para_2}")
return f"return_value_{para_1}"
def memos_wangyzh_hello_world() -> str:
logger.info("memos_wangyzh_hello_world function called.")
return "Hello world from memos-wangyzh!"
def memos_zhaojihao_hello_world() -> str:
logger.info("memos_zhaojihao_hello_world function called.")
return "Hello world from memos-zhaojihao!"
def memos_yuqingchen_hello_world() -> str:
logger.info("memos_yuqingchen_hello_world function called.")
return "Hello world from memos-yuqingchen!"
def memos_chentang_hello_world(user_id: str = "locomo_exp_user_1", version: str = "default"):
import os
from memos.configs.memory import MemoryConfigFactory
from memos.memories.factory import MemoryFactory
config = MemoryConfigFactory(
backend="general_text",
config={
"extractor_llm": {
"backend": "openai",
"config": {
"model_name_or_path": os.getenv("MODEL"),
"temperature": 0,
"max_tokens": 8192,
"api_key": os.getenv("OPENAI_API_KEY"),
"api_base": os.getenv("OPENAI_BASE_URL"),
},
},
"vector_db": {
"backend": "qdrant",
"config": {
"path": f"outputs/locomo/memos-{version}/storages/{user_id}/qdrant",
"collection_name": "test_textual_memory",
"distance_metric": "cosine",
"vector_dimension": 768, # nomic-embed-text model's embedding dimension is 768
},
},
"embedder": {
"backend": "ollama",
"config": {
"model_name_or_path": os.getenv("EMBEDDING_MODEL"),
},
},
},
)
memory = MemoryFactory.from_config(config)
return memory