Skip to main content
Glama

MemOS-MCP

by qinshu1109
sentence_transformer.py1.38 kB
from sentence_transformers import SentenceTransformer from memos.configs.embedder import SenTranEmbedderConfig from memos.embedders.base import BaseEmbedder from memos.log import get_logger logger = get_logger(__name__) class SenTranEmbedder(BaseEmbedder): """Sentence Transformer Embedder class.""" def __init__(self, config: SenTranEmbedderConfig): self.config = config self.model = SentenceTransformer( self.config.model_name_or_path, trust_remote_code=self.config.trust_remote_code ) if self.config.embedding_dims is not None: logger.warning( "SentenceTransformer does not support specifying embedding dimensions directly. " "The embedding dimension is determined by the model." "`embedding_dims` will be ignored." ) # Get embedding dimensions from the model self.config.embedding_dims = self.model.get_sentence_embedding_dimension() def embed(self, texts: list[str]) -> list[list[float]]: """ Generate embeddings for the given texts. Args: texts: List of texts to embed. Returns: List of embeddings, each represented as a list of floats. """ embeddings = self.model.encode(texts, convert_to_numpy=True) return embeddings.tolist()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server