Skip to main content
Glama

MemOS-MCP

by qinshu1109
sentence_chunker.py1.19 kB
from chonkie import SentenceChunker as ChonkieSentenceChunker from memos.configs.chunker import SentenceChunkerConfig from memos.log import get_logger from .base import BaseChunker, Chunk logger = get_logger(__name__) class SentenceChunker(BaseChunker): """Sentence-based text chunker.""" def __init__(self, config: SentenceChunkerConfig): self.config = config self.chunker = ChonkieSentenceChunker( tokenizer_or_token_counter=config.tokenizer_or_token_counter, chunk_size=config.chunk_size, chunk_overlap=config.chunk_overlap, min_sentences_per_chunk=config.min_sentences_per_chunk, ) logger.info(f"Initialized SentenceChunker with config: {config}") def chunk(self, text: str) -> list[Chunk]: """Chunk the given text into smaller chunks based on sentences.""" chonkie_chunks = self.chunker.chunk(text) chunks = [] for c in chonkie_chunks: chunk = Chunk(text=c.text, token_count=c.token_count, sentences=c.sentences) chunks.append(chunk) logger.debug(f"Generated {len(chunks)} chunks from input text") return chunks

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server