Skip to main content
Glama

MemOS-MCP

by qinshu1109
Apache 2.0
3
  • Linux
  • Apple
llm.py2.23 kB
from memos.configs.llm import LLMConfigFactory, OllamaLLMConfig from memos.llms.factory import LLMFactory from memos.llms.ollama import OllamaLLM # Scenario 1: Using LLMFactory with Ollama Backend # This is the most recommended way! 🌟 config = LLMConfigFactory.model_validate( { "backend": "ollama", "config": { "model_name_or_path": "qwen3:0.6b", "temperature": 0.8, "max_tokens": 1024, "top_p": 0.9, "top_k": 50, }, } ) llm = LLMFactory.from_config(config) messages = [ {"role": "user", "content": "How are you? /no_think"}, ] response = llm.generate(messages) print("Scenario 1:", response) print("==" * 20) # Scenario 2: Using Pydantic model directly config = OllamaLLMConfig( model_name_or_path="qwen3:0.6b", temperature=0.8, max_tokens=1024, top_p=0.9, top_k=50, ) ollama = OllamaLLM(config) messages = [ {"role": "user", "content": "How are you? /no_think"}, ] response = ollama.generate(messages) print("Scenario 2:", response) print("==" * 20) # Scenario 3: Using LLMFactory with OpenAI Backend config = LLMConfigFactory.model_validate( { "backend": "openai", "config": { "model_name_or_path": "gpt-4.1-nano", "temperature": 0.8, "max_tokens": 1024, "top_p": 0.9, "top_k": 50, "api_key": "sk-xxxx", "api_base": "https://api.openai.com/v1", }, } ) llm = LLMFactory.from_config(config) messages = [ {"role": "user", "content": "Hello, who are you"}, ] response = llm.generate(messages) print("Scenario 3:", response) print("==" * 20) # Scenario 4: Using LLMFactory with Huggingface Models config = LLMConfigFactory.model_validate( { "backend": "huggingface", "config": { "model_name_or_path": "Qwen/Qwen3-1.7B", "temperature": 0.8, "max_tokens": 1024, "top_p": 0.9, "top_k": 50, }, } ) llm = LLMFactory.from_config(config) messages = [ {"role": "user", "content": "Hello, who are you"}, ] response = llm.generate(messages) print("Scenario 4:", response) print("==" * 20)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qinshu1109/memos-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server