Skip to main content
Glama

mcp-server-qdrant

Official
by qdrant
base.py708 B
from abc import ABC, abstractmethod class EmbeddingProvider(ABC): """Abstract base class for embedding providers.""" @abstractmethod async def embed_documents(self, documents: list[str]) -> list[list[float]]: """Embed a list of documents into vectors.""" pass @abstractmethod async def embed_query(self, query: str) -> list[float]: """Embed a query into a vector.""" pass @abstractmethod def get_vector_name(self) -> str: """Get the name of the vector for the Qdrant collection.""" pass @abstractmethod def get_vector_size(self) -> int: """Get the size of the vector for the Qdrant collection.""" pass

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/qdrant/mcp-server-qdrant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server