implementation-plan.mdā¢5.55 kB
# EGW Writings MCP Server - Implementation Plan
## Project Overview
Creating an MCP server for Ellen G. White writings and Adventist literature to provide contextual AI research assistance.
**Repository**: https://github.com/Surgbc/egw-writings-mcp
**Status**: Phase 1 - Data Extraction
## Phase 1: Data Extraction (2-3 days)
### 1.1 APK Analysis
- [x] Research APK download and extraction methods (apktool, unzip)
- [ ] Download EGW Writings Android app from APKMirror/APKPure
- [ ] Extract APK using `apktool` or `unzip`
- [ ] Analyze app structure for API endpoints
- [ ] Document network requests and data formats
**Tools Identified:**
- APKMirror/APKPure for APK downloads
- `apktool` for reverse engineering
- `unzip` for basic extraction
- Network analysis for API discovery
### 1.2 API Reverse Engineering
- [ ] Identify book listing endpoints
- [ ] Identify chapter/paragraph retrieval endpoints
- [ ] Document authentication requirements (if any)
- [ ] Test API endpoints for data access
- [ ] Map data structure and response formats
### 1.3 Data Collection Pipeline
- [ ] Implement book metadata collection
- [ ] Implement paragraph-level content extraction
- [ ] Handle rate limiting and respectful scraping
- [ ] Validate data integrity and completeness
- [ ] Organize by categories (Ellen White, Pioneers, Commentaries)
## Phase 2: Data Processing and Storage (3-4 days)
### 2.1 Database Design
- [ ] Design SQLite schema for books, chapters, paragraphs
- [ ] Implement FTS5 full-text search indexing
- [ ] Add metadata for book categories
- [ ] Create efficient query structures for AI context
### 2.2 Data Processing
- [ ] Clean and normalize extracted text
- [ ] Parse paragraph identifiers (e.g., "GC 415.2")
- [ ] Build cross-reference indexes
- [ ] Implement search optimization for fast retrieval
### 2.3 Storage Strategy
- **Raw Data**: JSON files for each book/chapter
- **Processed Data**: SQLite database with optimized schema
- **Search Index**: FTS5 virtual tables for fast text search
- **Metadata**: Book hierarchies, categories, cross-references
## Phase 3: MCP Server Implementation (2-3 days)
### 3.1 Core MCP Server
- [ ] Implement MCP protocol handlers
- [ ] Create resource discovery endpoints
- [ ] Add tool registration and capabilities
- [ ] Implement error handling and logging
### 3.2 Search Tools
- [ ] Full-text search across all writings
- [ ] Category-specific search (Ellen White, Pioneers, etc.)
- [ ] Citation and reference lookup (e.g., "GC 415.2")
- [ ] Context window optimization for AI consumption
### 3.3 Context Tools
- [ ] Paragraph retrieval by identifier
- [ ] Book chapter summaries
- [ ] Related content suggestions
- [ ] Quote verification and attribution
## Phase 4: Testing and Deployment (1-2 days)
### 4.1 Testing
- [ ] Unit tests for data extraction
- [ ] Integration tests for MCP server
- [ ] Performance testing for search queries
- [ ] Validation of data accuracy
### 4.2 Documentation
- [ ] API documentation for MCP tools
- [ ] Usage examples and guides
- [ ] Data source attributions
- [ ] Deployment instructions
## Technical Stack
### Development
- **Runtime**: Node.js 18+ with TypeScript
- **Database**: SQLite with FTS5 full-text search
- **MCP Framework**: @modelcontextprotocol/sdk
- **HTTP Client**: axios for API requests
- **Build Tools**: tsx, eslint, jest
### APK Analysis
- **Primary**: `apktool` for reverse engineering
- **Alternative**: `unzip` for basic extraction
- **Network Analysis**: Monitor app traffic for API discovery
- **Static Analysis**: Examine code for hardcoded endpoints
### Data Pipeline
- **Extraction**: Respectful scraping with rate limiting
- **Processing**: Text normalization and indexing
- **Storage**: SQLite with optimized schema
- **Search**: FTS5 + custom indexing for fast queries
## Current Status
### Completed ā
1. Project structure and README created
2. Package.json with dependencies defined
3. TypeScript configuration
4. Git repository initialized
5. Private GitHub repository created
6. APK analysis tools researched
### Next Steps š
1. Download EGW Writings APK
2. Extract and analyze for API endpoints
3. Test API endpoints and document formats
4. Begin data collection pipeline
## Data Source Strategy
**Primary Source**: egwwritings.org Android app
- Extract API endpoints from app
- Reverse engineer data access methods
- Document request/response formats
- Implement respectful data collection
**Data Categories**:
- Ellen G. White writings
- Pioneer writings
- Commentaries and related literature
- Organized by books with paragraph identifiers
## Ethical Considerations
- Respectful rate limiting to avoid server overload
- Proper attribution of all content sources
- Compliance with egwwritings.org terms of service
- Educational and research use focus
- No redistribution beyond fair use
## Success Metrics
1. **Data Coverage**: Complete extraction of available writings
2. **Search Performance**: Sub-100ms search responses
3. **MCP Integration**: Seamless AI assistant integration
4. **Data Accuracy**: Verified paragraph identifiers and content
5. **Usability**: Clear documentation and examples
## Risk Mitigation
- **API Changes**: Document multiple extraction methods
- **Rate Limiting**: Implement respectful delays and retry logic
- **Data Quality**: Validation and integrity checks
- **Legal Compliance**: Educational use and proper attribution
- **Performance**: Optimized indexing and caching strategies
---
*Plan created: 2025-07-13*
*Last updated: 2025-07-13*