Skip to main content
Glama

mcp-run-python

Official
by pydantic
test_google_model.yaml1.59 kB
interactions: - request: headers: accept: - '*/*' accept-encoding: - gzip, deflate connection: - keep-alive content-length: - '169' content-type: - application/json host: - generativelanguage.googleapis.com method: POST parsed_body: contents: - parts: - text: Hello! role: user generationConfig: {} systemInstruction: parts: - text: You are a chatbot. role: user uri: https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent response: headers: alt-svc: - h3=":443"; ma=2592000,h3-29=":443"; ma=2592000 content-length: - '687' content-type: - application/json; charset=UTF-8 server-timing: - gfet4t7; dur=531 transfer-encoding: - chunked vary: - Origin - X-Origin - Referer parsed_body: candidates: - avgLogprobs: -0.0007684422995556484 content: parts: - text: | Hello there! How can I help you today? role: model finishReason: STOP modelVersion: gemini-1.5-flash responseId: wVpeaPOdAaXTnvgPlIeSoQg usageMetadata: candidatesTokenCount: 11 candidatesTokensDetails: - modality: TEXT tokenCount: 11 promptTokenCount: 7 promptTokensDetails: - modality: TEXT tokenCount: 7 totalTokenCount: 18 status: code: 200 message: OK version: 1

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server