Skip to main content
Glama

mcp-run-python

Official
by pydantic
README.md2.21 kB
# Pydantic Graph [![CI](https://github.com/pydantic/pydantic-ai/actions/workflows/ci.yml/badge.svg?event=push)](https://github.com/pydantic/pydantic-ai/actions/workflows/ci.yml?query=branch%3Amain) [![Coverage](https://coverage-badge.samuelcolvin.workers.dev/pydantic/pydantic-ai.svg)](https://coverage-badge.samuelcolvin.workers.dev/redirect/pydantic/pydantic-ai) [![PyPI](https://img.shields.io/pypi/v/pydantic-graph.svg)](https://pypi.python.org/pypi/pydantic-graph) [![python versions](https://img.shields.io/pypi/pyversions/pydantic-graph.svg)](https://github.com/pydantic/pydantic-ai) [![license](https://img.shields.io/github/license/pydantic/pydantic-ai.svg)](https://github.com/pydantic/pydantic-ai/blob/main/LICENSE) Graph and finite state machine library. This library is developed as part of [Pydantic AI](https://ai.pydantic.dev), however it has no dependency on `pydantic-ai` or related packages and can be considered as a pure graph-based state machine library. You may find it useful whether or not you're using Pydantic AI or even building with GenAI. As with Pydantic AI, this library prioritizes type safety and use of common Python syntax over esoteric, domain-specific use of Python syntax. `pydantic-graph` allows you to define graphs using standard Python syntax. In particular, edges are defined using the return type hint of nodes. Full documentation is available at [ai.pydantic.dev/graph](https://ai.pydantic.dev/graph). Here's a basic example: ```python {noqa="I001"} from __future__ import annotations from dataclasses import dataclass from pydantic_graph import BaseNode, End, Graph, GraphRunContext @dataclass class DivisibleBy5(BaseNode[None, None, int]): foo: int async def run( self, ctx: GraphRunContext, ) -> Increment | End[int]: if self.foo % 5 == 0: return End(self.foo) else: return Increment(self.foo) @dataclass class Increment(BaseNode): foo: int async def run(self, ctx: GraphRunContext) -> DivisibleBy5: return DivisibleBy5(self.foo + 1) fives_graph = Graph(nodes=[DivisibleBy5, Increment]) result = fives_graph.run_sync(DivisibleBy5(4)) print(result.output) #> 5 ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server