Skip to main content
Glama

mcp-run-python

Official
by pydantic
app.py1.04 kB
from typing import Any import logfire from fastapi import FastAPI, HTTPException, status from logfire.propagate import get_context from .models import Profile ### [process_slack_member] def process_slack_member(profile: Profile): from .modal import process_slack_member as _process_slack_member _process_slack_member.spawn( profile.model_dump(), logfire_ctx=get_context() ) ### [/process_slack_member] ### [app] app = FastAPI() logfire.instrument_fastapi(app, capture_headers=True) @app.post('/') async def process_webhook(payload: dict[str, Any]) -> dict[str, Any]: if payload['type'] == 'url_verification': return {'challenge': payload['challenge']} elif ( payload['type'] == 'event_callback' and payload['event']['type'] == 'team_join' ): profile = Profile.model_validate(payload['event']['user']['profile']) process_slack_member(profile) return {'status': 'OK'} raise HTTPException(status_code=status.HTTP_422_UNPROCESSABLE_ENTITY) ### [/app]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server