Skip to main content
Glama

mcp-run-python

Official
by pydantic
models.py1.78 kB
from __future__ import annotations as _annotations from pydantic import AwareDatetime, BaseModel from typing_extensions import TypedDict class TimeRangeBuilderSuccess(BaseModel, use_attribute_docstrings=True): """Response when a time range could be successfully generated.""" min_timestamp_with_offset: AwareDatetime """A datetime in ISO format with timezone offset.""" max_timestamp_with_offset: AwareDatetime """A datetime in ISO format with timezone offset.""" explanation: str | None """ A brief explanation of the time range that was selected. For example, if a user only mentions a specific point in time, you might explain that you selected a 10 minute window around that time. """ def __str__(self): readable_min_timestamp = self.min_timestamp_with_offset.strftime( '%A, %B %d, %Y %H:%M:%S %Z' ) readable_max_timestamp = self.max_timestamp_with_offset.strftime( '%A, %B %d, %Y %H:%M:%S %Z' ) lines = [ 'TimeRangeBuilderSuccess:', f'* min_timestamp_with_offset: {readable_min_timestamp}', f'* max_timestamp_with_offset: {readable_max_timestamp}', ] if self.explanation is not None: lines.append(f'* explanation: {self.explanation}') return '\n'.join(lines) class TimeRangeBuilderError(BaseModel): """Response when a time range cannot not be generated.""" error_message: str def __str__(self): return f'TimeRangeBuilderError:\n* {self.error_message}' TimeRangeResponse = TimeRangeBuilderSuccess | TimeRangeBuilderError class TimeRangeInputs(TypedDict): """The inputs for the time range inference agent.""" prompt: str now: AwareDatetime

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server