logfire-integration.md•6.21 kB
# Logfire Integration
Visualize and analyze evaluation results using Pydantic Logfire.
## Overview
Pydantic Evals uses OpenTelemetry to record traces of the evaluation process. These traces contain all the information from your evaluation reports, plus full tracing from the execution of your task function.
You can send these traces to any OpenTelemetry-compatible backend, including [Pydantic Logfire](https://logfire.pydantic.dev/docs/guides/web-ui/evals/).
## Installation
Install the optional logfire dependency:
```bash
pip install 'pydantic-evals[logfire]'
```
## Basic Setup
Configure Logfire before running evaluations:
```python {title="basic_logfire_setup.py"}
import logfire
from pydantic_evals import Case, Dataset
# Configure Logfire
logfire.configure(
send_to_logfire='if-token-present', # (1)!
)
# Your evaluation code
def my_task(inputs: str) -> str:
return f'result for {inputs}'
dataset = Dataset(cases=[Case(name='test', inputs='example')])
report = dataset.evaluate_sync(my_task)
```
1. Sends data to Logfire only if the `LOGFIRE_TOKEN` environment variable is set
That's it! Your evaluation traces will now appear in the Logfire web UI as long as you have the `LOGFIRE_TOKEN` environment variable set.
## What Gets Sent to Logfire
When you run an evaluation, Logfire receives:
1. **Evaluation metadata**
1. Dataset name
1. Number of cases
1. Evaluator names
2. **Per-case data**
1. Inputs and outputs
1. Expected outputs
1. Metadata
1. Execution duration
3. **Evaluation results**
1. Scores, assertions, and labels
1. Reasons (if included)
1. Evaluator failures
4. **Task execution traces**
1. All OpenTelemetry spans from your task function
1. Tool calls (for Pydantic AI agents)
1. API calls, database queries, etc.
## Viewing Results in Logfire
### Evaluation Overview
Logfire provides a special table view for evaluation results on the root evaluation span:

This view shows:
- Case names
- Pass/fail status
- Scores and assertions
- Execution duration
- Quick filtering and sorting
### Individual Case Details
Click any case to see detailed inputs and outputs:

### Full Trace View
View the complete execution trace including all spans generated during evaluation:

This is especially useful for:
- Debugging failed cases
- Understanding performance bottlenecks
- Analyzing tool usage patterns
- Writing span-based evaluators
## Analyzing Traces
### Comparing Runs
Run the same evaluation multiple times and compare in Logfire:
```python
from pydantic_evals import Case, Dataset
def original_task(inputs: str) -> str:
return f'original result for {inputs}'
def improved_task(inputs: str) -> str:
return f'improved result for {inputs}'
dataset = Dataset(cases=[Case(name='test', inputs='example')])
# Run 1: Original implementation
report1 = dataset.evaluate_sync(original_task)
# Run 2: Improved implementation
report2 = dataset.evaluate_sync(improved_task)
# Compare in Logfire by filtering by timestamp or attributes
```
### Debugging Failed Cases
Find failed cases quickly:
1. Search for `service_name = 'my_service_evals' AND is_exception` (replace with the actual service name you are using)
2. View the full span tree to see where the failure occurred
3. Inspect attributes and logs for error messages
## Span-Based Evaluation
Logfire integration enables powerful span-based evaluators. See [Span-Based Evaluation](../evaluators/span-based.md) for details.
Example: Verify specific tools were called:
```python
import logfire
from pydantic_evals import Case, Dataset
from pydantic_evals.evaluators import HasMatchingSpan
logfire.configure(send_to_logfire='if-token-present')
def my_agent(inputs: str) -> str:
return f'result for {inputs}'
dataset = Dataset(
cases=[Case(name='test', inputs='example')],
evaluators=[
HasMatchingSpan(
query={'name_contains': 'search_tool'},
evaluation_name='used_search',
),
],
)
report = dataset.evaluate_sync(my_agent)
```
The span tree is available in both:
- Your evaluator code (via `ctx.span_tree`)
- Logfire UI (visual trace view)
## Troubleshooting
### No Data Appearing in Logfire
Check:
1. **Token is set**: `echo $LOGFIRE_TOKEN`
2. **Configuration is correct**:
```python
import logfire
logfire.configure(send_to_logfire='always') # Force sending
```
3. **Network connectivity**: Check firewall settings
4. **Project exists**: Verify project name in Logfire UI
### Traces Missing Spans
If some spans are missing:
1. **Ensure logfire is configured before imports**:
```python
import logfire
logfire.configure() # Must be first
```
2. **Check instrumentation**: Ensure your code has enabled all instrumentations you want:
```python
import logfire
logfire.instrument_pydantic_ai()
logfire.instrument_httpx(capture_all=True)
```
## Best Practices
### 1. Configure Early
Always configure Logfire before running evaluations:
```python
import logfire
from pydantic_evals import Case, Dataset
logfire.configure(send_to_logfire='if-token-present')
# Now import and run evaluations
def task(inputs: str) -> str:
return f'result for {inputs}'
dataset = Dataset(cases=[Case(name='test', inputs='example')])
dataset.evaluate_sync(task)
```
### 2. Use Descriptive Service Names And Environments
```python
import logfire
logfire.configure(
service_name='rag-pipeline-evals',
environment='development',
)
```
### 3. Review Periodically
- Check Logfire regularly to identify patterns
- Look for consistently failing cases
- Analyze performance trends
- Adjust evaluators based on insights
## Next Steps
- **[Span-Based Evaluation](../evaluators/span-based.md)** - Use OpenTelemetry spans in evaluators
- **[Logfire Documentation](https://logfire.pydantic.dev/docs/guides/web-ui/evals/)** - Complete Logfire guide
- **[Metrics & Attributes](metrics-attributes.md)** - Add custom data to traces