Skip to main content
Glama
pydantic

mcp-run-python

Official
by pydantic
anthropic.py5.57 kB
from __future__ import annotations as _annotations import os from dataclasses import dataclass from typing import TypeAlias, overload import httpx from pydantic_ai import ModelProfile from pydantic_ai.exceptions import UserError from pydantic_ai.models import cached_async_http_client from pydantic_ai.profiles.anthropic import anthropic_model_profile from pydantic_ai.providers import Provider from .._json_schema import JsonSchema, JsonSchemaTransformer try: from anthropic import AsyncAnthropic, AsyncAnthropicBedrock, AsyncAnthropicVertex except ImportError as _import_error: raise ImportError( 'Please install the `anthropic` package to use the Anthropic provider, ' 'you can use the `anthropic` optional group — `pip install "pydantic-ai-slim[anthropic]"`' ) from _import_error AsyncAnthropicClient: TypeAlias = AsyncAnthropic | AsyncAnthropicBedrock | AsyncAnthropicVertex class AnthropicProvider(Provider[AsyncAnthropicClient]): """Provider for Anthropic API.""" @property def name(self) -> str: return 'anthropic' @property def base_url(self) -> str: return str(self._client.base_url) @property def client(self) -> AsyncAnthropicClient: return self._client def model_profile(self, model_name: str) -> ModelProfile | None: profile = anthropic_model_profile(model_name) return ModelProfile(json_schema_transformer=AnthropicJsonSchemaTransformer).update(profile) @overload def __init__(self, *, anthropic_client: AsyncAnthropicClient | None = None) -> None: ... @overload def __init__( self, *, api_key: str | None = None, base_url: str | None = None, http_client: httpx.AsyncClient | None = None ) -> None: ... def __init__( self, *, api_key: str | None = None, base_url: str | None = None, anthropic_client: AsyncAnthropicClient | None = None, http_client: httpx.AsyncClient | None = None, ) -> None: """Create a new Anthropic provider. Args: api_key: The API key to use for authentication, if not provided, the `ANTHROPIC_API_KEY` environment variable will be used if available. base_url: The base URL to use for the Anthropic API. anthropic_client: An existing [`AsyncAnthropic`](https://github.com/anthropics/anthropic-sdk-python) client to use. If provided, the `api_key` and `http_client` arguments will be ignored. http_client: An existing `httpx.AsyncClient` to use for making HTTP requests. """ if anthropic_client is not None: assert http_client is None, 'Cannot provide both `anthropic_client` and `http_client`' assert api_key is None, 'Cannot provide both `anthropic_client` and `api_key`' self._client = anthropic_client else: api_key = api_key or os.getenv('ANTHROPIC_API_KEY') if not api_key: raise UserError( 'Set the `ANTHROPIC_API_KEY` environment variable or pass it via `AnthropicProvider(api_key=...)`' 'to use the Anthropic provider.' ) if http_client is not None: self._client = AsyncAnthropic(api_key=api_key, base_url=base_url, http_client=http_client) else: http_client = cached_async_http_client(provider='anthropic') self._client = AsyncAnthropic(api_key=api_key, base_url=base_url, http_client=http_client) @dataclass(init=False) class AnthropicJsonSchemaTransformer(JsonSchemaTransformer): """Transforms schemas to the subset supported by Anthropic structured outputs. Transformation is applied when: - `NativeOutput` is used as the `output_type` of the Agent - `strict=True` is set on the `Tool` The behavior of this transformer differs from the OpenAI one in that it sets `Tool.strict=False` by default when not explicitly set to True. Example: ```python from pydantic_ai import Agent agent = Agent('anthropic:claude-sonnet-4-5') @agent.tool_plain # -> defaults to strict=False def my_tool(x: str) -> dict[str, int]: ... ``` Anthropic's SDK `transform_schema()` automatically: - Adds `additionalProperties: false` to all objects (required by API) - Removes unsupported constraints (minLength, pattern, etc.) - Moves removed constraints to description field - Removes title and $schema fields """ def walk(self) -> JsonSchema: schema = super().walk() # The caller (pydantic_ai.models._customize_tool_def or _customize_output_object) coalesces # - output_object.strict = self.is_strict_compatible # - tool_def.strict = self.is_strict_compatible # the reason we don't default to `strict=True` is that the transformation could be lossy # so in order to change the behavior (default to True), we need to come up with logic that will check for lossiness # https://github.com/pydantic/pydantic-ai/issues/3541 self.is_strict_compatible = self.strict is True # not compatible when strict is False/None if self.strict is True: from anthropic import transform_schema return transform_schema(schema) else: return schema def transform(self, schema: JsonSchema) -> JsonSchema: schema.pop('title', None) schema.pop('$schema', None) return schema

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server