from __future__ import annotations
import functools
import typing
from collections.abc import AsyncIterator, Iterable, Iterator, Mapping
from contextlib import asynccontextmanager
from dataclasses import dataclass, field
from datetime import datetime
from itertools import count
from typing import TYPE_CHECKING, Any, Generic, Literal, cast, overload
import anyio.to_thread
from botocore.exceptions import ClientError
from typing_extensions import ParamSpec, assert_never
from pydantic_ai import (
AudioUrl,
BinaryContent,
BuiltinToolCallPart,
BuiltinToolReturnPart,
CachePoint,
DocumentUrl,
FinishReason,
ImageUrl,
ModelMessage,
ModelProfileSpec,
ModelRequest,
ModelResponse,
ModelResponsePart,
ModelResponseStreamEvent,
RetryPromptPart,
SystemPromptPart,
TextPart,
ThinkingPart,
ToolCallPart,
ToolReturnPart,
UserPromptPart,
VideoUrl,
_utils,
usage,
)
from pydantic_ai._run_context import RunContext
from pydantic_ai.exceptions import ModelAPIError, ModelHTTPError, UserError
from pydantic_ai.models import Model, ModelRequestParameters, StreamedResponse, download_item
from pydantic_ai.providers import Provider, infer_provider
from pydantic_ai.providers.bedrock import BEDROCK_GEO_PREFIXES, BedrockModelProfile
from pydantic_ai.settings import ModelSettings
from pydantic_ai.tools import ToolDefinition
if TYPE_CHECKING:
from botocore.client import BaseClient
from botocore.eventstream import EventStream
from mypy_boto3_bedrock_runtime import BedrockRuntimeClient
from mypy_boto3_bedrock_runtime.literals import StopReasonType
from mypy_boto3_bedrock_runtime.type_defs import (
ContentBlockOutputTypeDef,
ContentBlockUnionTypeDef,
ConverseRequestTypeDef,
ConverseResponseTypeDef,
ConverseStreamMetadataEventTypeDef,
ConverseStreamOutputTypeDef,
ConverseStreamResponseTypeDef,
CountTokensRequestTypeDef,
DocumentBlockTypeDef,
GuardrailConfigurationTypeDef,
ImageBlockTypeDef,
InferenceConfigurationTypeDef,
MessageUnionTypeDef,
PerformanceConfigurationTypeDef,
PromptVariableValuesTypeDef,
ReasoningContentBlockOutputTypeDef,
SystemContentBlockTypeDef,
ToolChoiceTypeDef,
ToolConfigurationTypeDef,
ToolSpecificationTypeDef,
ToolTypeDef,
VideoBlockTypeDef,
)
LatestBedrockModelNames = Literal[
'amazon.titan-tg1-large',
'amazon.titan-text-lite-v1',
'amazon.titan-text-express-v1',
'us.amazon.nova-pro-v1:0',
'us.amazon.nova-lite-v1:0',
'us.amazon.nova-micro-v1:0',
'anthropic.claude-3-5-sonnet-20241022-v2:0',
'us.anthropic.claude-3-5-sonnet-20241022-v2:0',
'anthropic.claude-3-5-haiku-20241022-v1:0',
'us.anthropic.claude-3-5-haiku-20241022-v1:0',
'anthropic.claude-instant-v1',
'anthropic.claude-v2:1',
'anthropic.claude-v2',
'anthropic.claude-3-sonnet-20240229-v1:0',
'us.anthropic.claude-3-sonnet-20240229-v1:0',
'anthropic.claude-3-haiku-20240307-v1:0',
'us.anthropic.claude-3-haiku-20240307-v1:0',
'anthropic.claude-3-opus-20240229-v1:0',
'us.anthropic.claude-3-opus-20240229-v1:0',
'anthropic.claude-3-5-sonnet-20240620-v1:0',
'us.anthropic.claude-3-5-sonnet-20240620-v1:0',
'anthropic.claude-3-7-sonnet-20250219-v1:0',
'us.anthropic.claude-3-7-sonnet-20250219-v1:0',
'anthropic.claude-opus-4-20250514-v1:0',
'us.anthropic.claude-opus-4-20250514-v1:0',
'global.anthropic.claude-opus-4-5-20251101-v1:0',
'anthropic.claude-sonnet-4-20250514-v1:0',
'us.anthropic.claude-sonnet-4-20250514-v1:0',
'eu.anthropic.claude-sonnet-4-20250514-v1:0',
'anthropic.claude-sonnet-4-5-20250929-v1:0',
'us.anthropic.claude-sonnet-4-5-20250929-v1:0',
'eu.anthropic.claude-sonnet-4-5-20250929-v1:0',
'anthropic.claude-haiku-4-5-20251001-v1:0',
'us.anthropic.claude-haiku-4-5-20251001-v1:0',
'eu.anthropic.claude-haiku-4-5-20251001-v1:0',
'cohere.command-text-v14',
'cohere.command-r-v1:0',
'cohere.command-r-plus-v1:0',
'cohere.command-light-text-v14',
'meta.llama3-8b-instruct-v1:0',
'meta.llama3-70b-instruct-v1:0',
'meta.llama3-1-8b-instruct-v1:0',
'us.meta.llama3-1-8b-instruct-v1:0',
'meta.llama3-1-70b-instruct-v1:0',
'us.meta.llama3-1-70b-instruct-v1:0',
'meta.llama3-1-405b-instruct-v1:0',
'us.meta.llama3-2-11b-instruct-v1:0',
'us.meta.llama3-2-90b-instruct-v1:0',
'us.meta.llama3-2-1b-instruct-v1:0',
'us.meta.llama3-2-3b-instruct-v1:0',
'us.meta.llama3-3-70b-instruct-v1:0',
'mistral.mistral-7b-instruct-v0:2',
'mistral.mixtral-8x7b-instruct-v0:1',
'mistral.mistral-large-2402-v1:0',
'mistral.mistral-large-2407-v1:0',
]
"""Latest Bedrock models."""
BedrockModelName = str | LatestBedrockModelNames
"""Possible Bedrock model names.
Since Bedrock supports a variety of date-stamped models, we explicitly list the latest models but allow any name in the type hints.
See [the Bedrock docs](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html) for a full list.
"""
P = ParamSpec('P')
T = typing.TypeVar('T')
_FINISH_REASON_MAP: dict[StopReasonType, FinishReason] = {
'content_filtered': 'content_filter',
'end_turn': 'stop',
'guardrail_intervened': 'content_filter',
'max_tokens': 'length',
'stop_sequence': 'stop',
'tool_use': 'tool_call',
}
class BedrockModelSettings(ModelSettings, total=False):
"""Settings for Bedrock models.
See [the Bedrock Converse API docs](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax) for a full list.
See [the boto3 implementation](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock-runtime/client/converse.html) of the Bedrock Converse API.
"""
# ALL FIELDS MUST BE `bedrock_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.
bedrock_guardrail_config: GuardrailConfigurationTypeDef
"""Content moderation and safety settings for Bedrock API requests.
See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_GuardrailConfiguration.html>.
"""
bedrock_performance_configuration: PerformanceConfigurationTypeDef
"""Performance optimization settings for model inference.
See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PerformanceConfiguration.html>.
"""
bedrock_request_metadata: dict[str, str]
"""Additional metadata to attach to Bedrock API requests.
See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax>.
"""
bedrock_additional_model_response_fields_paths: list[str]
"""JSON paths to extract additional fields from model responses.
See more about it on <https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html>.
"""
bedrock_prompt_variables: Mapping[str, PromptVariableValuesTypeDef]
"""Variables for substitution into prompt templates.
See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PromptVariableValues.html>.
"""
bedrock_additional_model_requests_fields: Mapping[str, Any]
"""Additional model-specific parameters to include in requests.
See more about it on <https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html>.
"""
bedrock_cache_tool_definitions: bool
"""Whether to add a cache point after the last tool definition.
When enabled, the last tool in the `tools` array will include a `cachePoint`, allowing Bedrock to cache tool
definitions and reduce costs for compatible models.
See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.
"""
bedrock_cache_instructions: bool
"""Whether to add a cache point after the system prompt blocks.
When enabled, an extra `cachePoint` is appended to the system prompt so Bedrock can cache system instructions.
See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.
"""
bedrock_cache_messages: bool
"""Convenience setting to enable caching for the last user message.
When enabled, this automatically adds a cache point to the last content block
in the final user message, which is useful for caching conversation history
or context in multi-turn conversations.
Note: Uses 1 of Bedrock's 4 available cache points per request. Any additional CachePoint
markers in messages will be automatically limited to respect the 4-cache-point maximum.
See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.
"""
@dataclass(init=False)
class BedrockConverseModel(Model):
"""A model that uses the Bedrock Converse API."""
client: BedrockRuntimeClient
_model_name: BedrockModelName = field(repr=False)
_provider: Provider[BaseClient] = field(repr=False)
def __init__(
self,
model_name: BedrockModelName,
*,
provider: Literal['bedrock', 'gateway'] | Provider[BaseClient] = 'bedrock',
profile: ModelProfileSpec | None = None,
settings: ModelSettings | None = None,
):
"""Initialize a Bedrock model.
Args:
model_name: The name of the model to use.
model_name: The name of the Bedrock model to use. List of model names available
[here](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
provider: The provider to use for authentication and API access. Can be either the string
'bedrock' or an instance of `Provider[BaseClient]`. If not provided, a new provider will be
created using the other parameters.
profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
settings: Model-specific settings that will be used as defaults for this model.
"""
self._model_name = model_name
if isinstance(provider, str):
provider = infer_provider('gateway/bedrock' if provider == 'gateway' else provider)
self._provider = provider
self.client = cast('BedrockRuntimeClient', provider.client)
super().__init__(settings=settings, profile=profile or provider.model_profile)
@property
def base_url(self) -> str:
return str(self.client.meta.endpoint_url)
@property
def model_name(self) -> str:
"""The model name."""
return self._model_name
@property
def system(self) -> str:
"""The model provider."""
return self._provider.name
def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[ToolTypeDef]:
return [self._map_tool_definition(r) for r in model_request_parameters.tool_defs.values()]
@staticmethod
def _map_tool_definition(f: ToolDefinition) -> ToolTypeDef:
tool_spec: ToolSpecificationTypeDef = {'name': f.name, 'inputSchema': {'json': f.parameters_json_schema}}
if f.description: # pragma: no branch
tool_spec['description'] = f.description
return {'toolSpec': tool_spec}
async def request(
self,
messages: list[ModelMessage],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> ModelResponse:
model_settings, model_request_parameters = self.prepare_request(
model_settings,
model_request_parameters,
)
settings = cast(BedrockModelSettings, model_settings or {})
response = await self._messages_create(messages, False, settings, model_request_parameters)
model_response = await self._process_response(response)
return model_response
async def count_tokens(
self,
messages: list[ModelMessage],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> usage.RequestUsage:
"""Count the number of tokens, works with limited models.
Check the actual supported models on <https://docs.aws.amazon.com/bedrock/latest/userguide/count-tokens.html>
"""
model_settings, model_request_parameters = self.prepare_request(model_settings, model_request_parameters)
settings = cast(BedrockModelSettings, model_settings or {})
system_prompt, bedrock_messages = await self._map_messages(messages, model_request_parameters, settings)
params: CountTokensRequestTypeDef = {
'modelId': self._remove_inference_geo_prefix(self.model_name),
'input': {
'converse': {
'messages': bedrock_messages,
'system': system_prompt,
},
},
}
try:
response = await anyio.to_thread.run_sync(functools.partial(self.client.count_tokens, **params))
except ClientError as e:
status_code = e.response.get('ResponseMetadata', {}).get('HTTPStatusCode')
if isinstance(status_code, int):
raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.response) from e
raise ModelAPIError(model_name=self.model_name, message=str(e)) from e
return usage.RequestUsage(input_tokens=response['inputTokens'])
@asynccontextmanager
async def request_stream(
self,
messages: list[ModelMessage],
model_settings: ModelSettings | None,
model_request_parameters: ModelRequestParameters,
run_context: RunContext[Any] | None = None,
) -> AsyncIterator[StreamedResponse]:
model_settings, model_request_parameters = self.prepare_request(
model_settings,
model_request_parameters,
)
settings = cast(BedrockModelSettings, model_settings or {})
response = await self._messages_create(messages, True, settings, model_request_parameters)
yield BedrockStreamedResponse(
model_request_parameters=model_request_parameters,
_model_name=self.model_name,
_event_stream=response['stream'],
_provider_name=self._provider.name,
_provider_url=self.base_url,
_provider_response_id=response.get('ResponseMetadata', {}).get('RequestId', None),
)
async def _process_response(self, response: ConverseResponseTypeDef) -> ModelResponse:
items: list[ModelResponsePart] = []
if message := response['output'].get('message'): # pragma: no branch
for item in message['content']:
if reasoning_content := item.get('reasoningContent'):
if redacted_content := reasoning_content.get('redactedContent'):
items.append(
ThinkingPart(
id='redacted_content',
content='',
signature=redacted_content.decode('utf-8'),
provider_name=self.system,
)
)
elif reasoning_text := reasoning_content.get('reasoningText'): # pragma: no branch
signature = reasoning_text.get('signature')
items.append(
ThinkingPart(
content=reasoning_text['text'],
signature=signature,
provider_name=self.system if signature else None,
)
)
if text := item.get('text'):
items.append(TextPart(content=text))
elif tool_use := item.get('toolUse'):
items.append(
ToolCallPart(
tool_name=tool_use['name'],
args=tool_use['input'],
tool_call_id=tool_use['toolUseId'],
),
)
u = usage.RequestUsage(
input_tokens=response['usage']['inputTokens'],
output_tokens=response['usage']['outputTokens'],
cache_read_tokens=response['usage'].get('cacheReadInputTokens', 0),
cache_write_tokens=response['usage'].get('cacheWriteInputTokens', 0),
)
response_id = response.get('ResponseMetadata', {}).get('RequestId', None)
raw_finish_reason = response['stopReason']
provider_details = {'finish_reason': raw_finish_reason}
finish_reason = _FINISH_REASON_MAP.get(raw_finish_reason)
return ModelResponse(
parts=items,
usage=u,
model_name=self.model_name,
provider_response_id=response_id,
provider_name=self._provider.name,
provider_url=self.base_url,
finish_reason=finish_reason,
provider_details=provider_details,
)
@overload
async def _messages_create(
self,
messages: list[ModelMessage],
stream: Literal[True],
model_settings: BedrockModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> ConverseStreamResponseTypeDef:
pass
@overload
async def _messages_create(
self,
messages: list[ModelMessage],
stream: Literal[False],
model_settings: BedrockModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> ConverseResponseTypeDef:
pass
async def _messages_create(
self,
messages: list[ModelMessage],
stream: bool,
model_settings: BedrockModelSettings | None,
model_request_parameters: ModelRequestParameters,
) -> ConverseResponseTypeDef | ConverseStreamResponseTypeDef:
settings = model_settings or BedrockModelSettings()
system_prompt, bedrock_messages = await self._map_messages(messages, model_request_parameters, settings)
inference_config = self._map_inference_config(settings)
params: ConverseRequestTypeDef = {
'modelId': self.model_name,
'messages': bedrock_messages,
'system': system_prompt,
'inferenceConfig': inference_config,
}
tool_config = self._map_tool_config(model_request_parameters, settings)
if tool_config:
params['toolConfig'] = tool_config
tools: list[ToolTypeDef] = list(tool_config['tools']) if tool_config else []
self._limit_cache_points(system_prompt, bedrock_messages, tools)
if model_request_parameters.builtin_tools:
raise UserError('Bedrock does not support built-in tools')
# Bedrock supports a set of specific extra parameters
if model_settings:
if guardrail_config := model_settings.get('bedrock_guardrail_config', None):
params['guardrailConfig'] = guardrail_config
if performance_configuration := model_settings.get('bedrock_performance_configuration', None):
params['performanceConfig'] = performance_configuration
if request_metadata := model_settings.get('bedrock_request_metadata', None):
params['requestMetadata'] = request_metadata
if additional_model_response_fields_paths := model_settings.get(
'bedrock_additional_model_response_fields_paths', None
):
params['additionalModelResponseFieldPaths'] = additional_model_response_fields_paths
if additional_model_requests_fields := model_settings.get('bedrock_additional_model_requests_fields', None):
params['additionalModelRequestFields'] = additional_model_requests_fields
if prompt_variables := model_settings.get('bedrock_prompt_variables', None):
params['promptVariables'] = prompt_variables
try:
if stream:
model_response = await anyio.to_thread.run_sync(
functools.partial(self.client.converse_stream, **params)
)
else:
model_response = await anyio.to_thread.run_sync(functools.partial(self.client.converse, **params))
except ClientError as e:
status_code = e.response.get('ResponseMetadata', {}).get('HTTPStatusCode')
if isinstance(status_code, int):
raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.response) from e
raise ModelAPIError(model_name=self.model_name, message=str(e)) from e
return model_response
@staticmethod
def _map_inference_config(
model_settings: ModelSettings | None,
) -> InferenceConfigurationTypeDef:
model_settings = model_settings or {}
inference_config: InferenceConfigurationTypeDef = {}
if max_tokens := model_settings.get('max_tokens'):
inference_config['maxTokens'] = max_tokens
if (temperature := model_settings.get('temperature')) is not None:
inference_config['temperature'] = temperature
if top_p := model_settings.get('top_p'):
inference_config['topP'] = top_p
if stop_sequences := model_settings.get('stop_sequences'):
inference_config['stopSequences'] = stop_sequences
return inference_config
def _map_tool_config(
self,
model_request_parameters: ModelRequestParameters,
model_settings: BedrockModelSettings | None,
) -> ToolConfigurationTypeDef | None:
tools = self._get_tools(model_request_parameters)
if not tools:
return None
profile = BedrockModelProfile.from_profile(self.profile)
if (
model_settings
and model_settings.get('bedrock_cache_tool_definitions')
and profile.bedrock_supports_tool_caching
):
tools.append({'cachePoint': {'type': 'default'}})
tool_choice: ToolChoiceTypeDef
if not model_request_parameters.allow_text_output:
tool_choice = {'any': {}}
else:
tool_choice = {'auto': {}}
tool_config: ToolConfigurationTypeDef = {'tools': tools}
if tool_choice and BedrockModelProfile.from_profile(self.profile).bedrock_supports_tool_choice:
tool_config['toolChoice'] = tool_choice
return tool_config
async def _map_messages( # noqa: C901
self,
messages: list[ModelMessage],
model_request_parameters: ModelRequestParameters,
model_settings: BedrockModelSettings | None,
) -> tuple[list[SystemContentBlockTypeDef], list[MessageUnionTypeDef]]:
"""Maps a `pydantic_ai.Message` to the Bedrock `MessageUnionTypeDef`.
Groups consecutive ToolReturnPart objects into a single user message as required by Bedrock Claude/Nova models.
"""
settings = model_settings or BedrockModelSettings()
profile = BedrockModelProfile.from_profile(self.profile)
system_prompt: list[SystemContentBlockTypeDef] = []
bedrock_messages: list[MessageUnionTypeDef] = []
document_count: Iterator[int] = count(1)
for message in messages:
if isinstance(message, ModelRequest):
for part in message.parts:
if isinstance(part, SystemPromptPart) and part.content:
system_prompt.append({'text': part.content})
elif isinstance(part, UserPromptPart):
bedrock_messages.extend(
await self._map_user_prompt(part, document_count, profile.bedrock_supports_prompt_caching)
)
elif isinstance(part, ToolReturnPart):
assert part.tool_call_id is not None
bedrock_messages.append(
{
'role': 'user',
'content': [
{
'toolResult': {
'toolUseId': part.tool_call_id,
'content': [
{'text': part.model_response_str()}
if profile.bedrock_tool_result_format == 'text'
else {'json': part.model_response_object()}
],
'status': 'success',
}
}
],
}
)
elif isinstance(part, RetryPromptPart):
# TODO(Marcelo): We need to add a test here.
if part.tool_name is None: # pragma: no cover
bedrock_messages.append({'role': 'user', 'content': [{'text': part.model_response()}]})
else:
assert part.tool_call_id is not None
bedrock_messages.append(
{
'role': 'user',
'content': [
{
'toolResult': {
'toolUseId': part.tool_call_id,
'content': [{'text': part.model_response()}],
'status': 'error',
}
}
],
}
)
elif isinstance(message, ModelResponse):
content: list[ContentBlockOutputTypeDef] = []
for item in message.parts:
if isinstance(item, TextPart):
content.append({'text': item.content})
elif isinstance(item, ThinkingPart):
if (
item.provider_name == self.system
and item.signature
and BedrockModelProfile.from_profile(self.profile).bedrock_send_back_thinking_parts
):
if item.id == 'redacted_content':
reasoning_content: ReasoningContentBlockOutputTypeDef = {
'redactedContent': item.signature.encode('utf-8'),
}
else:
reasoning_content: ReasoningContentBlockOutputTypeDef = {
'reasoningText': {
'text': item.content,
'signature': item.signature,
}
}
content.append({'reasoningContent': reasoning_content})
else:
start_tag, end_tag = self.profile.thinking_tags
content.append({'text': '\n'.join([start_tag, item.content, end_tag])})
elif isinstance(item, BuiltinToolCallPart | BuiltinToolReturnPart):
pass
else:
assert isinstance(item, ToolCallPart)
content.append(self._map_tool_call(item))
if content:
bedrock_messages.append({'role': 'assistant', 'content': content})
else:
assert_never(message)
# Merge together sequential user messages.
processed_messages: list[MessageUnionTypeDef] = []
last_message: dict[str, Any] | None = None
for current_message in bedrock_messages:
if (
last_message is not None
and current_message['role'] == last_message['role']
and current_message['role'] == 'user'
):
# Add the new user content onto the existing user message.
last_content = list(last_message['content'])
last_content.extend(current_message['content'])
last_message['content'] = last_content
continue
# Add the entire message to the list of messages.
processed_messages.append(current_message)
last_message = cast(dict[str, Any], current_message)
if instructions := self._get_instructions(messages, model_request_parameters):
system_prompt.insert(0, {'text': instructions})
if system_prompt and settings.get('bedrock_cache_instructions') and profile.bedrock_supports_prompt_caching:
system_prompt.append({'cachePoint': {'type': 'default'}})
if processed_messages and settings.get('bedrock_cache_messages') and profile.bedrock_supports_prompt_caching:
last_user_content = self._get_last_user_message_content(processed_messages)
if last_user_content is not None:
# AWS currently rejects cache points that directly follow non-text content.
# Insert a newline text block as a workaround.
if 'text' not in last_user_content[-1]:
last_user_content.append({'text': '\n'})
last_user_content.append({'cachePoint': {'type': 'default'}})
return system_prompt, processed_messages
@staticmethod
def _get_last_user_message_content(messages: list[MessageUnionTypeDef]) -> list[Any] | None:
"""Get the content list from the last user message that can receive a cache point.
Returns the content list if:
- A user message exists
- It has a non-empty content list
- The last content block doesn't already have a cache point
Returns None otherwise.
"""
user_messages = [msg for msg in messages if msg.get('role') == 'user']
if not user_messages:
return None
content = user_messages[-1].get('content') # Last user message
if not content or not isinstance(content, list) or len(content) == 0:
return None
last_block = content[-1]
if not isinstance(last_block, dict):
return None
if 'cachePoint' in last_block: # Skip if already has a cache point
return None
return content
@staticmethod
async def _map_user_prompt( # noqa: C901
part: UserPromptPart,
document_count: Iterator[int],
supports_prompt_caching: bool,
) -> list[MessageUnionTypeDef]:
content: list[ContentBlockUnionTypeDef] = []
if isinstance(part.content, str):
content.append({'text': part.content})
else:
for item in part.content:
if isinstance(item, str):
content.append({'text': item})
elif isinstance(item, BinaryContent):
format = item.format
if item.is_document:
name = f'Document {next(document_count)}'
assert format in ('pdf', 'txt', 'csv', 'doc', 'docx', 'xls', 'xlsx', 'html', 'md')
content.append({'document': {'name': name, 'format': format, 'source': {'bytes': item.data}}})
elif item.is_image:
assert format in ('jpeg', 'png', 'gif', 'webp')
content.append({'image': {'format': format, 'source': {'bytes': item.data}}})
elif item.is_video:
assert format in ('mkv', 'mov', 'mp4', 'webm', 'flv', 'mpeg', 'mpg', 'wmv', 'three_gp')
content.append({'video': {'format': format, 'source': {'bytes': item.data}}})
else:
raise NotImplementedError('Binary content is not supported yet.')
elif isinstance(item, ImageUrl | DocumentUrl | VideoUrl):
downloaded_item = await download_item(item, data_format='bytes', type_format='extension')
format = downloaded_item['data_type']
if item.kind == 'image-url':
format = item.media_type.split('/')[1]
assert format in ('jpeg', 'png', 'gif', 'webp'), f'Unsupported image format: {format}'
image: ImageBlockTypeDef = {'format': format, 'source': {'bytes': downloaded_item['data']}}
content.append({'image': image})
elif item.kind == 'document-url':
name = f'Document {next(document_count)}'
document: DocumentBlockTypeDef = {
'name': name,
'format': item.format,
'source': {'bytes': downloaded_item['data']},
}
content.append({'document': document})
elif item.kind == 'video-url': # pragma: no branch
format = item.media_type.split('/')[1]
assert format in (
'mkv',
'mov',
'mp4',
'webm',
'flv',
'mpeg',
'mpg',
'wmv',
'three_gp',
), f'Unsupported video format: {format}'
video: VideoBlockTypeDef = {'format': format, 'source': {'bytes': downloaded_item['data']}}
content.append({'video': video})
elif isinstance(item, AudioUrl): # pragma: no cover
raise NotImplementedError('Audio is not supported yet.')
elif isinstance(item, CachePoint):
if not supports_prompt_caching:
# Silently skip CachePoint for models that don't support prompt caching
continue
if not content or 'cachePoint' in content[-1]:
raise UserError(
'CachePoint cannot be the first content in a user message - there must be previous content to cache when using Bedrock. '
'To cache system instructions or tool definitions, use the `bedrock_cache_instructions` or `bedrock_cache_tool_definitions` settings instead.'
)
if 'text' not in content[-1]:
# AWS currently rejects cache points that directly follow non-text content.
# Insert an empty text block as a workaround (see https://github.com/pydantic/pydantic-ai/issues/3418
# and https://github.com/pydantic/pydantic-ai/pull/2560#discussion_r2349209916).
content.append({'text': '\n'})
content.append({'cachePoint': {'type': 'default'}})
else:
assert_never(item)
return [{'role': 'user', 'content': content}]
@staticmethod
def _map_tool_call(t: ToolCallPart) -> ContentBlockOutputTypeDef:
return {
'toolUse': {'toolUseId': _utils.guard_tool_call_id(t=t), 'name': t.tool_name, 'input': t.args_as_dict()}
}
@staticmethod
def _limit_cache_points(
system_prompt: list[SystemContentBlockTypeDef],
bedrock_messages: list[MessageUnionTypeDef],
tools: list[ToolTypeDef],
) -> None:
"""Limit the number of cache points in the request to Bedrock's maximum.
Bedrock enforces a maximum of 4 cache points per request. This method ensures
compliance by counting existing cache points and removing excess ones from messages.
Strategy:
1. Count cache points in system_prompt
2. Count cache points in tools
3. Raise UserError if system + tools already exceed MAX_CACHE_POINTS
4. Calculate remaining budget for message cache points
5. Traverse messages from newest to oldest, keeping the most recent cache points
within the remaining budget
6. Remove excess cache points from older messages to stay within limit
Cache point priority (always preserved):
- System prompt cache points
- Tool definition cache points
- Message cache points (newest first, oldest removed if needed)
Raises:
UserError: If system_prompt and tools combined already exceed MAX_CACHE_POINTS (4).
This indicates a configuration error that cannot be auto-fixed.
"""
MAX_CACHE_POINTS = 4
# Count existing cache points in system prompt
used_cache_points = sum(1 for block in system_prompt if 'cachePoint' in block)
# Count existing cache points in tools
for tool in tools:
if 'cachePoint' in tool:
used_cache_points += 1
# Calculate remaining cache points budget for messages
remaining_budget = MAX_CACHE_POINTS - used_cache_points
if remaining_budget < 0: # pragma: no cover
raise UserError(
f'Too many cache points for Bedrock request. '
f'System prompt and tool definitions already use {used_cache_points} cache points, '
f'which exceeds the maximum of {MAX_CACHE_POINTS}.'
)
# Remove excess cache points from messages (newest to oldest)
for message in reversed(bedrock_messages):
content = message.get('content')
if not content or not isinstance(content, list): # pragma: no cover
continue
# Build a new content list, keeping only cache points within budget
new_content: list[Any] = []
for block in reversed(content): # Process newest first
is_cache_point = isinstance(block, dict) and 'cachePoint' in block
if is_cache_point:
if remaining_budget > 0:
remaining_budget -= 1
new_content.append(block)
else:
new_content.append(block)
message['content'] = list(reversed(new_content)) # Restore original order
@staticmethod
def _remove_inference_geo_prefix(model_name: BedrockModelName) -> BedrockModelName:
"""Remove inference geographic prefix from model ID if present."""
for prefix in BEDROCK_GEO_PREFIXES:
if model_name.startswith(f'{prefix}.'):
return model_name.removeprefix(f'{prefix}.')
return model_name
@dataclass
class BedrockStreamedResponse(StreamedResponse):
"""Implementation of `StreamedResponse` for Bedrock models."""
_model_name: BedrockModelName
_event_stream: EventStream[ConverseStreamOutputTypeDef]
_provider_name: str
_provider_url: str
_timestamp: datetime = field(default_factory=_utils.now_utc)
_provider_response_id: str | None = None
async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]: # noqa: C901
"""Return an async iterator of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s.
This method should be implemented by subclasses to translate the vendor-specific stream of events into
pydantic_ai-format events.
"""
if self._provider_response_id is not None: # pragma: no cover
self.provider_response_id = self._provider_response_id
chunk: ConverseStreamOutputTypeDef
tool_id: str | None = None
async for chunk in _AsyncIteratorWrapper(self._event_stream):
match chunk:
case {'messageStart': _}:
continue
case {'messageStop': message_stop}:
raw_finish_reason = message_stop['stopReason']
self.provider_details = {'finish_reason': raw_finish_reason}
self.finish_reason = _FINISH_REASON_MAP.get(raw_finish_reason)
case {'metadata': metadata}:
if 'usage' in metadata: # pragma: no branch
self._usage += self._map_usage(metadata)
case {'contentBlockStart': content_block_start}:
index = content_block_start['contentBlockIndex']
start = content_block_start['start']
if 'toolUse' in start: # pragma: no branch
tool_use_start = start['toolUse']
tool_id = tool_use_start['toolUseId']
tool_name = tool_use_start['name']
maybe_event = self._parts_manager.handle_tool_call_delta(
vendor_part_id=index,
tool_name=tool_name,
args=None,
tool_call_id=tool_id,
)
if maybe_event: # pragma: no branch
yield maybe_event
case {'contentBlockDelta': content_block_delta}:
index = content_block_delta['contentBlockIndex']
delta = content_block_delta['delta']
if 'reasoningContent' in delta:
if redacted_content := delta['reasoningContent'].get('redactedContent'):
for event in self._parts_manager.handle_thinking_delta(
vendor_part_id=index,
id='redacted_content',
signature=redacted_content.decode('utf-8'),
provider_name=self.provider_name,
):
yield event
else:
signature = delta['reasoningContent'].get('signature')
for event in self._parts_manager.handle_thinking_delta(
vendor_part_id=index,
content=delta['reasoningContent'].get('text'),
signature=signature,
provider_name=self.provider_name if signature else None,
):
yield event
if text := delta.get('text'):
for event in self._parts_manager.handle_text_delta(vendor_part_id=index, content=text):
yield event
if 'toolUse' in delta:
tool_use = delta['toolUse']
maybe_event = self._parts_manager.handle_tool_call_delta(
vendor_part_id=index,
tool_name=tool_use.get('name'),
args=tool_use.get('input'),
tool_call_id=tool_id,
)
if maybe_event: # pragma: no branch
yield maybe_event
case _:
pass # pyright wants match statements to be exhaustive
@property
def model_name(self) -> str:
"""Get the model name of the response."""
return self._model_name
@property
def provider_name(self) -> str:
"""Get the provider name."""
return self._provider_name
@property
def provider_url(self) -> str:
"""Get the provider base URL."""
return self._provider_url
@property
def timestamp(self) -> datetime:
return self._timestamp
def _map_usage(self, metadata: ConverseStreamMetadataEventTypeDef) -> usage.RequestUsage:
return usage.RequestUsage(
input_tokens=metadata['usage']['inputTokens'],
output_tokens=metadata['usage']['outputTokens'],
cache_read_tokens=metadata['usage'].get('cacheReadInputTokens', 0),
cache_write_tokens=metadata['usage'].get('cacheWriteInputTokens', 0),
)
class _AsyncIteratorWrapper(Generic[T]):
"""Wrap a synchronous iterator in an async iterator."""
def __init__(self, sync_iterator: Iterable[T]):
self.sync_iterator = iter(sync_iterator)
def __aiter__(self):
return self
async def __anext__(self) -> T:
try:
return await anyio.to_thread.run_sync(next, self.sync_iterator)
except RuntimeError as e:
if type(e.__cause__) is StopIteration:
raise StopAsyncIteration
else:
raise e # pragma: lax no cover