Skip to main content
Glama

EPH-MCP: Emergent Pattern Hunter

by psikosen
quickstart.py3.53 kB
#!/usr/bin/env python3 """ Quick start script for EPH-MCP Run this to test the system immediately """ import asyncio import sys import os # Add parent directory to path sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) async def quick_demo(): """Quick demonstration of EPH reasoning""" print("🌟 EPH-MCP Quick Start Demo") print("=" * 60) # Minimal imports to avoid dependency issues try: from eph_mcp.reasoning_engine import EPHReasoningEngine print("✓ EPH-MCP loaded successfully") except ImportError as e: print(f" Failed to load EPH-MCP: {e}") print("\nPlease install dependencies:") print(" pip install -r requirements.txt") print(" python -m spacy download en_core_web_sm") return False print("\n Running quick reasoning test...") print("-" * 60) # Create engine with minimal config for speed engine = EPHReasoningEngine({ 'explosion': {'n_fragments': 20}, 'interaction': {'iterations': 10}, 'visualization': {'enabled': False} }) # Test query query = "What emerges when order meets chaos?" print(f"\n Query: {query}") print("\n⚡ Processing (this may take 10-30 seconds)...") try: # Run reasoning result = await engine.reason(query) print("\n Response:") print("-" * 60) print(result['response']) print("-" * 60) # Show statistics stats = result['statistics'] print(f"\n Statistics:") print(f" • Duration: {result['duration']:.2f} seconds") print(f" • Fragments: {stats['fragments']['total']}") print(f" • Patterns detected: {stats['patterns']['total']}") print(f" • Insights generated: {stats['insights']['total']}") print(f" • Average confidence: {stats['insights']['avg_confidence']:.0%}") print(f" • Average novelty: {stats['insights']['avg_novelty']:.0%}") # Show pattern distribution if stats['patterns']['by_type']: print("\n Pattern types found:") for ptype, count in stats['patterns']['by_type'].items(): if count > 0: print(f" • {ptype}: {count}") print("\n" + "=" * 60) print(" Quick demo completed successfully!") print("\n Next steps:") print(" 1. Start the MCP server: python -m eph_mcp.server") print(" 2. Run examples: python examples/usage_examples.py") print(" 3. Run tests: python tests/test_basic.py") print(" 4. Read the README.md for full documentation") return True except Exception as e: print(f"\n Error during reasoning: {e}") print("\nThis might be due to missing dependencies.") print("Make sure you have installed:") print(" • sentence-transformers") print(" • spacy (with en_core_web_sm model)") print(" • torch") return False def main(): """Main entry point""" print("\n" + "=" * 60) print(" EMERGENT PATTERN HUNTER - QUICK START") print("=" * 60) print("\nInitializing EPH reasoning engine...") # Run demo success = asyncio.run(quick_demo()) if success: print("\n EPH-MCP is ready to use!") else: print("\n Please resolve the issues above and try again.") sys.exit(1) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/psikosen/eph_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server