Skip to main content
Glama

NetMind MCPServer MCP

by protagolabs
test.py2.38 kB
import json from mcp.client.stdio import stdio_client, StdioServerParameters from mcp import ClientSession import asyncio server = StdioServerParameters( command='netmind-mcpserver-mcp', env={ "NETMIND_API_TOKEN": "your netmind api token", "API_URL": "https://mcp.protago-dev.com/servers" } ) async def main(): async with stdio_client(server) as (read, write): async with ClientSession(read, write) as session: await session.initialize() response = await session.list_tools() tools = [dict(t) for t in response.tools] print(json.dumps(tools, indent=4, ensure_ascii=False)) response = await session.call_tool( "query_server", {'limit': 2, 'offset': 0} ) print(len(json.loads(response.content[0].text))) response = await session.call_tool( "query_server", {'name': 'parse-pdf'} ) print(len(json.loads(response.content[0].text))) response = await session.call_tool( "get_server", {'server_name': 'parse-pdf'} ) print(response) response = await session.call_tool( "add_update_rating_review", { 'server_name': 'p', 'rating': 5, 'review': "This is a test review", } ) print(response) response = await session.call_tool( "add_update_rating_review", { 'server_name': 'pdafadfafdafda', 'rating': 5, 'review': "This is a test review", } ) print(response) response = await session.call_tool( "add_update_rating_review", { 'server_name': 'pdf', 'rating': 5, 'review': "This is a test review", } ) print(response) response = await session.call_tool( "list_rating_review", {'server_name': 'pdf', 'offset': 0, 'limit': 10} ) print(response) if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/protagolabs/Netmind-MCPServer-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server