Skip to main content
Glama

RAG MCP server

by proofofsid
README.md2.1 kB
# RAG-MCP Server A general-purpose Retrieval-Augmented Generation (RAG) server using the Model Control Protocol (MCP), designed to be tested with RISC Zero's Bonsai documentation. ## Overview This project implements a RAG server that: - Uses MCP (Model Control Protocol) for standardized communication - Implements RAG (Retrieval-Augmented Generation) workflow for document querying - Can be tested with RISC Zero's Bonsai documentation - Supports local LLM integration through Ollama ## Features - Document ingestion and indexing - Semantic search capabilities - Local LLM integration - MCP protocol compliance - RISC Zero Bonsai documentation support ## Prerequisites - Python 3.12+ - Ollama (for local LLM support) - Poetry (for dependency management) ## Installation 1. Install Python dependencies: ```bash poetry install ``` 2. Install and start Ollama: ```bash # Install Ollama brew install ollama # for macOS # or curl -fsSL https://ollama.com/install.sh | sh # for Linux # Start Ollama service ollama serve ``` 3. Pull the required model: ```bash ollama pull llama2 ``` ## Usage 1. Start the MCP server: ```bash poetry run python mcp_server.py ``` 2. The server will: - Initialize the LLM and embedding model - Ingest documents from the data directory - Process queries using the RAG workflow 3. Test with RISC Zero Bonsai docs: - Place RISC Zero Bonsai documentation in the `data/` directory - Query the server about Bonsai features and implementation ## Project Structure - `mcp_server.py`: Main server implementation - `rag.py`: RAG workflow implementation - `data/`: Directory for document ingestion - `storage/`: Vector store and document storage - `start_ollama.sh`: Script to start Ollama service ## Testing with RISC Zero Bonsai The server is configured to work with RISC Zero's Bonsai documentation. You can: 1. Add Bonsai documentation to the `data/` directory 2. Query about Bonsai features, implementation details, and usage 3. Test the RAG workflow with Bonsai-specific questions ## Made with ❤️ by [proofofsid](https://github.com/proofofsid)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/proofofsid/rag-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server