Skip to main content
Glama

get_conversation

Retrieve conversation details and full transcripts from the ElevenLabs MCP Server for analyzing completed agent interactions.

Instructions

Gets conversation with transcript. Returns: conversation details and full transcript. Use when: analyzing completed agent conversations.

Args: conversation_id: The unique identifier of the conversation to retrieve, you can get the ids from the list_conversations tool.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
conversation_idYes

Implementation Reference

  • The handler function for the 'get_conversation' MCP tool. It fetches the conversation by ID using the ElevenLabs client, parses the transcript, formats details including metadata and analysis, and returns a TextContent response.
    @mcp.tool( description="""Gets conversation with transcript. Returns: conversation details and full transcript. Use when: analyzing completed agent conversations. Args: conversation_id: The unique identifier of the conversation to retrieve, you can get the ids from the list_conversations tool. """ ) def get_conversation( conversation_id: str, ) -> TextContent: """Get conversation details with transcript""" try: response = client.conversational_ai.conversations.get(conversation_id) # Parse transcript using utility function transcript, _ = parse_conversation_transcript(response.transcript) response_text = f"""Conversation Details: ID: {response.conversation_id} Status: {response.status} Agent ID: {response.agent_id} Message Count: {len(response.transcript)} Transcript: {transcript}""" if response.metadata: metadata = response.metadata duration = getattr( metadata, "call_duration_secs", getattr(metadata, "duration_seconds", "N/A"), ) started_at = getattr( metadata, "start_time_unix_secs", getattr(metadata, "started_at", "N/A") ) response_text += ( f"\n\nMetadata:\nDuration: {duration} seconds\nStarted: {started_at}" ) if response.analysis: analysis_summary = getattr( response.analysis, "summary", "Analysis available but no summary" ) response_text += f"\n\nAnalysis:\n{analysis_summary}" return TextContent(type="text", text=response_text) except Exception as e: make_error(f"Failed to fetch conversation: {str(e)}") # satisfies type checker return TextContent(type="text", text="")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/projectservan8n/elevenlabs-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server