Skip to main content
Glama

Agentic AI System with MCP Integration

populate_data.py2.54 kB
import psycopg2 import random from datetime import datetime, timedelta DB_NAME = "mydatabase" DB_USER = "***" # Replace with your PostgreSQL username DB_PASSWORD = "****" # Replace with your PostgreSQL password DB_HOST = "localhost" DB_PORT = "5432" try: conn = psycopg2.connect(dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD, host=DB_HOST, port=DB_PORT) cur = conn.cursor() # Drop table if it exists cur.execute("DROP TABLE IF EXISTS financial_transactions;") conn.commit() # Create the financial_transactions table cur.execute(""" CREATE TABLE financial_transactions ( id SERIAL PRIMARY KEY, transaction_date TIMESTAMP NOT NULL, account_id INTEGER NOT NULL, transaction_type VARCHAR(50) NOT NULL, amount DECIMAL(10, 2) NOT NULL, description TEXT ) """) conn.commit() print("Table financial_transactions created successfully.") # Insert 500 rows of sample data num_rows = 500 start_date = datetime(2024, 1, 1) end_date = datetime(2024, 12, 31) transaction_types = ["deposit", "withdrawal", "transfer_in", "transfer_out", "payment"] print("Inserting sample data...") for _ in range(num_rows): random_date = start_date + (end_date - start_date) * random.random() account_id = random.randint(1001, 1050) transaction_type = random.choice(transaction_types) amount = round(random.uniform(10, 1000), 2) description = f"{transaction_type.capitalize()} on account {account_id}" if random.random() < 0.2: description += f" - Reference ID: {random.randint(10000, 99999)}" cur.execute(""" INSERT INTO financial_transactions (transaction_date, account_id, transaction_type, amount, description) VALUES (%s, %s, %s, %s, %s) """, (random_date, account_id, transaction_type, amount, description)) conn.commit() print(f"{num_rows} sample financial transactions inserted successfully.") cur.close() conn.close() # Print the first 5 rows of the table to verify the data conn = psycopg2.connect(dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD, host=DB_HOST, port=DB_PORT) cur = conn.cursor() cur.execute("SELECT * FROM financial_transactions LIMIT 5;") rows = cur.fetchall() for row in rows: print(row) cur.close() conn.close() except psycopg2.Error as e: print(f"Error connecting to or interacting with PostgreSQL: {e}")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pratyush-usc-mba/Designing-an-Agentic-AI-System-with-MCP-Integration'

If you have feedback or need assistance with the MCP directory API, please join our Discord server