Skip to main content
Glama

Agentic AI System with MCP Integration

test_top_movers.py1.55 kB
import os import pytest import requests from unittest.mock import patch from services.top_movers import get_top_gainers_losers @pytest.fixture def mock_env_key(): with patch.dict(os.environ, {"ALPHA_VANTAGE_KEY": "TEST_KEY"}): yield @patch('services.top_movers.requests.get') def test_get_top_gainers_losers_success(mock_get, mock_env_key): mock_response = mock_get.return_value mock_response.raise_for_status.return_value = None mock_response.json.return_value = {"top_gainers": [{"ticker": "ABC"}], "top_losers": [{"ticker": "XYZ"}]} data = get_top_gainers_losers() assert data is not None assert "top_gainers" in data assert "top_losers" in data assert len(data['top_gainers']) == 1 assert len(data['top_losers']) == 1 mock_get.assert_called_once() @patch('services.top_movers.requests.get') def test_get_top_gainers_losers_failure(mock_get, mock_env_key): mock_response = mock_get.return_value mock_response.raise_for_status.side_effect = requests.exceptions.RequestException("API Error") data = get_top_gainers_losers() assert data is None mock_get.assert_called_once() @patch('services.top_movers.requests.get') def test_get_top_gainers_losers_empty(mock_get, mock_env_key): mock_response = mock_get.return_value mock_response.raise_for_status.return_value = None mock_response.json.return_value = {} data = get_top_gainers_losers() assert data is not None assert not data # Check if the dictionary is empty mock_get.assert_called_once()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pratyush-usc-mba/Designing-an-Agentic-AI-System-with-MCP-Integration'

If you have feedback or need assistance with the MCP directory API, please join our Discord server