Skip to main content
Glama

Pitstop

pit_stops.py3.24 kB
from clients.openf1_client import OpenF1Client from typing import Optional from models.live import PitStopsResponse, PitStopData # Initialize OpenF1 client openf1_client = OpenF1Client() def get_live_pit_stops( year: int, country: str, session_name: str = "Race", driver_number: Optional[int] = None ) -> PitStopsResponse: """ Get pit stop analysis with crew timing from OpenF1. Args: year: Season year (2023+, OpenF1 data availability) country: Country name (e.g., "Monaco", "Italy", "United States") session_name: Session name - 'Race', 'Qualifying', 'Sprint', 'Practice 1/2/3' (default: 'Race') driver_number: Optional filter by driver number (1-99) Returns: PitStopsResponse with pit stop durations and statistics Example: get_live_pit_stops(2024, "Monaco", "Race") → All pit stops with timing get_live_pit_stops(2024, "Monaco", "Race", 1) → Verstappen's pit stops """ # Get meeting and session info meetings = openf1_client.get_meetings(year=year, country_name=country) if not meetings: return PitStopsResponse( session_name=session_name, year=year, country=country, pit_stops=[], total_pit_stops=0 ) # Get sessions for this meeting sessions = openf1_client.get_sessions(year=year, country_name=country, session_name=session_name) if not sessions: return PitStopsResponse( session_name=session_name, year=year, country=country, pit_stops=[], total_pit_stops=0 ) session = sessions[0] session_key = session['session_key'] # Get pit stop data pit_data = openf1_client.get_pit_stops( session_key=session_key, driver_number=driver_number ) # Convert to Pydantic models pit_stops = [ PitStopData( date=stop['date'], driver_number=stop['driver_number'], lap_number=stop['lap_number'], pit_duration=stop['pit_duration'], session_key=stop['session_key'], meeting_key=stop['meeting_key'] ) for stop in pit_data ] # Calculate statistics fastest_stop = None slowest_stop = None average_duration = None if pit_stops: durations = [stop.pit_duration for stop in pit_stops] fastest_stop = min(durations) slowest_stop = max(durations) average_duration = sum(durations) / len(durations) return PitStopsResponse( session_name=session_name, year=year, country=country, pit_stops=pit_stops, total_pit_stops=len(pit_stops), fastest_stop=fastest_stop, slowest_stop=slowest_stop, average_duration=average_duration ) if __name__ == "__main__": # Test with 2024 Monaco GP print("Testing get_live_pit_stops with 2024 Monaco GP...") result = get_live_pit_stops(2024, "Monaco", "Race") print(f"Total pit stops: {result.total_pit_stops}") if result.fastest_stop: print(f"Fastest stop: {result.fastest_stop:.2f}s") print(f"Average stop: {result.average_duration:.2f}s")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/praneethravuri/pitstop'

If you have feedback or need assistance with the MCP directory API, please join our Discord server