We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/ppetru/tiddlywiki-mcp'
If you have feedback or need assistance with the MCP directory API, please join our Discord server
.env.example•1.88 kB
# TiddlyWiki MCP Server Configuration
# Copy this file to .env and customize for your setup
# =============================================================================
# Required: TiddlyWiki Connection
# =============================================================================
# URL of your TiddlyWiki server
# Examples:
# - http://localhost:8080 (local TiddlyWiki)
# - http://wiki.example.com (remote server)
# - wiki.service.consul (Consul service discovery)
TIDDLYWIKI_URL=http://localhost:8080
# =============================================================================
# Optional: Transport Configuration
# =============================================================================
# Transport mode: "stdio" (default, for local development) or "http" (for deployment)
MCP_TRANSPORT=stdio
# HTTP server port (only used when MCP_TRANSPORT=http)
MCP_PORT=3000
# =============================================================================
# Optional: Authentication
# =============================================================================
# Header name containing the authenticated username
# (can be any header your TiddlyWiki expects, or leave default if not using auth)
AUTH_HEADER=X-Oidc-Username
# Default username for tiddler creation/modification
AUTH_USER=mcp-user
# =============================================================================
# Optional: Embeddings / Semantic Search
# =============================================================================
# Enable semantic search with Ollama embeddings (true by default)
EMBEDDINGS_ENABLED=true
# Ollama API URL
OLLAMA_URL=http://localhost:11434
# Embedding model to use (must support nomic-embed-text task prefixes)
# Run: ollama pull nomic-embed-text
OLLAMA_MODEL=nomic-embed-text
# Path to SQLite database for storing embeddings
EMBEDDINGS_DB_PATH=./embeddings.db