Enables configuration of environment variables for the server through a .env file to store API keys and other settings
Provides the backend framework for the MCP server, handling API endpoints and request processing
Used for processing and converting PPT documents to enable content extraction for the RAG engine
Utilizes OpenAI Embeddings for vectorizing document content to enable semantic search capabilities
Supports project configuration through TOML files as indicated by the pyproject.toml in the project structure
ChatPPT-MCP: 多文档RAG引擎的 MCP Server
一个基于MCP(Model Context Protocol)的多文档RAG(Retrieval-Augmented Generation)引擎应用,支持PPT文档的智能问答和分析。
功能特性
- 🔍 多文档处理: 支持索引多个PPT文档,基于视觉模型
- 🤖 智能问答: 基于RAG技术的文档问答
- 🔄 MCP集成: 使用Model Context Protocol进行工具调用
- 📊 交互式测试: 提供命令行交互测试界面
技术栈
- 后端框架: FastAPI
- 向量数据库: ChromaDB
- LLM: Doubao Vision
- 文档处理: LibreOffice, pypdfium2
- 协议: Model Context Protocol (MCP)
- 向量化: OpenAI Embeddings
安装使用
1. 安装依赖
2. 环境配置
复制环境变量模板文件,并修改:
3. 运行应用
RAG引擎测试模式
MCP测试模式(先sse启动:python mcp_ppt_server.py --transport sse)
项目结构
许可证
MIT License
This server cannot be installed
A multi-document RAG engine server that enables intelligent querying and analysis of PPT documents using the Model Context Protocol (MCP).
Related MCP Servers
- -securityFlicense-qualityA TypeScript MCP server that allows querying documents using LLMs with context from locally stored repositories and text files through a RAG (Retrieval-Augmented Generation) system.Last updated -1JavaScript
- -security-license-qualityA Retrieval-Augmented Generation server that enables semantic PDF search with OCR capabilities, allowing users to query document content through any MCP client and receive intelligent answers.Last updated -1PythonApache 2.0
- -securityAlicense-qualityAn MCP server that enables RAG (Retrieval-Augmented Generation) on markdown documents by converting them to embedding vectors and performing vector search using DuckDB.Last updated -PythonApache 2.0
- -securityAlicense-qualityA Model Context Protocol (MCP) based server that efficiently manages PDF files, allowing AI coding tools like Cursor to read, summarize, and extract information from PDF datasheets to assist embedded development work.Last updated -Apache 2.0