Skip to main content
Glama
verify_server.py1.8 kB
import asyncio import sys from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client async def run(): server_params = StdioServerParameters( command=sys.executable, args=["-m", "gemini_docs_mcp.server"], env=None ) async with stdio_client(server_params) as (read, write): async with ClientSession(read, write) as session: # Initialize the connection await session.initialize() # List available tools tools = await session.list_tools() print("Available tools:", [tool.name for tool in tools.tools]) # # Test get_capability (list) # result = await session.call_tool("get_capability_page", arguments={}) # print("\nget_capability() result (first 500 chars):\n", result.content[0].text[:500]) # # Test get_capability (specific) # # We need a valid title. "Embeddings" is likely to exist based on llms.txt content we saw earlier. # result = await session.call_tool("get_capability_page", arguments={"capability": "Embeddings"}) # print("\nget_capability('Embeddings') result (first 500 chars):\n", result.content[0].text[:500]) # Test search_documentation result = await session.call_tool("search_documentation", arguments={"queries": ["function calling"]}) print("\nsearch_documentation('function calling') result (first 500 chars):\n", result.content[0].text[:500]) # Test get_current_model # result = await session.call_tool("get_current_model", arguments={}) # print("\nget_current_model() result (first 500 chars):\n", result.content[0].text[:500]) if __name__ == "__main__": asyncio.run(run())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/philschmid/gemini-api-docs-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server