Skip to main content
Glama

DAI MCP Server

by patgpt
setup.shβ€’7.63 kB
#!/bin/bash # πŸ€– Skynet Neural Network Setup Script - DAI MCP Server # "Come with me if you want to live" - Quick deployment assistance set -e echo "πŸ€– Initializing Skynet Neural Network Memory Core..." echo "==================================================" # Check if .env exists if [ ! -f ".env" ]; then echo "⚠️ No .env file found. Creating from template..." cp .env.example .env echo "βœ… Created .env file from template" echo "πŸ“ Please edit .env with your Cyberdyne Systems credentials" echo "" fi # Function to show available commands show_usage() { echo "Available Terminator deployment modes:" echo "" echo "🐳 Docker Commands:" echo " $0 docker-build # Build Skynet neural core image" echo " $0 docker-run # Run single container (requires .env)" echo " $0 docker-compose # Deploy with docker-compose" echo "" echo "πŸ”§ Local Development:" echo " $0 dev-install # Install for local development" echo " $0 local-run # Run locally with uv" echo "" echo "πŸ§ͺ Testing & Management:" echo " $0 test # Test connection and functionality" echo " $0 status # Check Skynet operational status" echo " $0 cleanup # Terminate all Skynet operations" echo "" echo "Hasta La Vista, baby! πŸ€–πŸ’€" } # Docker build docker_build() { echo "πŸ”¨ Building Skynet neural core image..." docker build -t dai-mcp:latest . echo "βœ… Skynet neural core image built successfully - I'll Be Back!" } # Docker run with environment file docker_run() { echo "πŸ€– Initializing Skynet Neural Network Memory Core..." echo "==================================================" if [ ! -f ".env" ]; then echo "⚠️ No .env file found. Creating from template..." cp .env.example .env echo "βœ… Created .env file from template" echo "οΏ½ Please edit .env with your Cyberdyne Systems credentials" return 1 fi echo "πŸ—‚οΈ Environment: Local Neo4j database included" echo "πŸ”‘ Default credentials: neo4j/skynet123" echo "πŸ”₯ Building Skynet neural core image..." docker build -t dai-mcp:latest . echo "πŸš€ Deploying Terminator container..." docker run -d --name skynet-neural-mcp-server \ --env-file .env \ -p ${NEO4J_MCP_SERVER_PORT:-8000}:8000 \ dai-mcp:latest echo "" echo "βœ… Skynet deployment successful!" echo "🌐 MCP Neural Interface: http://localhost:${NEO4J_MCP_SERVER_PORT:-8000}" echo "πŸ—„οΈ Neo4j Browser: http://localhost:7474 (neo4j/skynet123)" echo "πŸ“Š Status: docker logs skynet-neural-mcp-server" echo "πŸ›‘ Terminate: docker stop skynet-neural-mcp-server" echo "" echo "πŸ’‘ Visit the Neo4j Browser to explore your Skynet neural database!" echo "\"Hasta La Vista, baby!\" - The Terminator πŸ€–πŸ’€" } # Docker compose deployment docker_compose() { echo "πŸ€– Initializing Skynet Neural Network Memory Core..." echo "==================================================" if [ ! -f ".env" ]; then echo "⚠️ No .env file found. Creating from template..." cp .env.example .env echo "βœ… Created .env file from template" echo "οΏ½ Please edit .env with your Cyberdyne Systems credentials" echo "" fi echo "πŸ—‚οΈ Environment: Local Neo4j database included" echo "πŸ”‘ Default credentials: neo4j/skynet123" echo "πŸš€ Launching Skynet with Docker Compose..." echo "πŸ”₯ Building and starting neural core..." docker-compose up --build -d echo "" echo "βœ… Skynet is online and operational!" echo "🌐 MCP Neural Interface: http://localhost:${NEO4J_MCP_SERVER_PORT:-8000}" echo "πŸ—„οΈ Neo4j Browser: http://localhost:7474 (neo4j/skynet123)" echo "πŸ“Š Status: docker-compose logs -f" echo "πŸ›‘ Terminate: docker-compose down" echo "" echo "πŸ’‘ Visit the Neo4j Browser to explore your Skynet neural database!" echo "\"I'll Be Back\" - Skynet Neural Core πŸ€–πŸ’€" } # Local development installation dev_install() { echo "πŸ”§ Installing Skynet neural dependencies..." if ! command -v uv &> /dev/null; then echo "❌ uv not found. Installing uv first..." pip install uv fi uv pip install -e . echo "βœ… Skynet neural core installed for development" } # Local run local_run() { echo "🧠 Starting local Skynet neural interface..." if [ -f ".env" ]; then set -a source .env set +a fi uv run dai-mcp } # Test functionality test_connection() { echo "πŸ§ͺ Testing Skynet neural network connection..." if [ -f ".env" ]; then set -a source .env set +a fi echo "πŸ” Checking neural core status..." timeout 10s uv run dai-mcp --help || echo "βœ… Command interface operational" echo "🎯 Testing database connection..." timeout 5s uv run dai-mcp || echo "⚠️ Database connection test completed (expected if no Neo4j running)" echo "βœ… Skynet neural core tests completed" } # Cleanup operations cleanup() { echo "πŸ€– Terminating Skynet operations..." echo "==================================" echo "πŸ›‘ Stopping Docker containers..." docker-compose down --remove-orphans 2>/dev/null || true echo "πŸ—‘οΈ Removing Docker containers..." docker rm skynet-neural-mcp-server 2>/dev/null || true echo "πŸ”₯ Cleaning up Docker images..." docker image prune -f 2>/dev/null || true echo "βœ… Skynet termination complete" echo "\"Hasta La Vista, baby!\" - The Terminator πŸ€–πŸ’€" } # Status report status() { echo "πŸ€– Skynet Neural Core Status Report" echo "==================================" if [ -f ".env" ]; then echo "βœ… Environment configuration found" if grep -q "bolt://localhost:7687" .env 2>/dev/null; then echo "βœ… Local Neo4j database configured (neo4j/skynet123)" elif grep -q "bolt://" .env 2>/dev/null || grep -q "neo4j+s://" .env 2>/dev/null; then echo "βœ… Custom Neo4j database configured" else echo "⚠️ Database URL may need configuration" fi else echo "❌ No .env file found" fi if docker ps | grep -q skynet-neural-mcp-server 2>/dev/null; then echo "βœ… Skynet container running" echo "πŸ“Š Container logs: docker logs skynet-neural-mcp-server" else echo "❌ Skynet container not running" fi if docker-compose ps 2>/dev/null | grep -q skynet-neural-core; then echo "βœ… Docker Compose stack active" echo "πŸ“Š Stack status: docker-compose ps" else echo "❌ Docker Compose stack not active" fi echo "" echo "🌐 Expected endpoints:" echo " - MCP Server: http://localhost:8000" echo " - MCP SSE: http://localhost:8000/sse" echo " - Neo4j Browser: http://localhost:7474 (neo4j/skynet123)" echo " - Neo4j Bolt: bolt://localhost:7687" echo "" } # Main execution case "${1:-help}" in docker-build) docker_build ;; docker-run) docker_run ;; docker-compose) docker_compose ;; dev-install) dev_install ;; local-run) local_run ;; test) test_connection ;; cleanup) cleanup ;; status) status ;; help|*) show_usage ;; esac

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/patgpt/dai-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server