Skip to main content
Glama
patch-ridermg48

TradingView MCP Server

top_losers

Identify cryptocurrency assets experiencing significant price declines on a specific exchange and timeframe using Bollinger Band analysis to support trading decisions.

Instructions

Return top losers for an exchange and timeframe using bollinger band analysis.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
exchangeNoKUCOIN
timeframeNo15m
limitNo

Implementation Reference

  • The core handler function for the top_losers tool. It sanitizes inputs, fetches trending analysis data, sorts by ascending change percentage to get losers, and formats the output as a list of dictionaries with symbol, changePercent, and indicators.
    @mcp.tool() def top_losers(exchange: str = "KUCOIN", timeframe: str = "15m", limit: int = 25) -> list[dict]: """Return top losers for an exchange and timeframe using bollinger band analysis.""" exchange = sanitize_exchange(exchange, "KUCOIN") timeframe = sanitize_timeframe(timeframe, "15m") limit = max(1, min(limit, 50)) rows = _fetch_trending_analysis(exchange, timeframe=timeframe, limit=limit) # Reverse sort for losers (lowest change first) rows.sort(key=lambda x: x["changePercent"]) # Convert to dict format return [{ "symbol": row["symbol"], "changePercent": row["changePercent"], "indicators": dict(row["indicators"]) } for row in rows[:limit]]
  • Helper function that fetches the trending analysis data used by top_losers (and top_gainers). It loads symbols, processes in batches using TradingView TA, computes metrics, applies filters, and returns sorted rows of data.
    def _fetch_trending_analysis(exchange: str, timeframe: str = "5m", filter_type: str = "", rating_filter: int = None, limit: int = 50) -> List[Row]: """Fetch trending coins analysis similar to the original app's trending endpoint.""" if not TRADINGVIEW_TA_AVAILABLE: raise RuntimeError("tradingview_ta is missing; run `uv sync`.") symbols = load_symbols(exchange) if not symbols: raise RuntimeError(f"No symbols found for exchange: {exchange}") # Process symbols in batches due to TradingView API limits batch_size = 200 # Considering API limitations all_coins = [] screener = EXCHANGE_SCREENER.get(exchange, "crypto") # Process symbols in batches for i in range(0, len(symbols), batch_size): batch_symbols = symbols[i:i + batch_size] try: analysis = get_multiple_analysis(screener=screener, interval=timeframe, symbols=batch_symbols) except Exception as e: continue # If this batch fails, move to the next one # Process coins in this batch for key, value in analysis.items(): try: if value is None: continue indicators = value.indicators metrics = compute_metrics(indicators) if not metrics or metrics.get('bbw') is None: continue # Apply rating filter if specified if filter_type == "rating" and rating_filter is not None: if metrics['rating'] != rating_filter: continue all_coins.append(Row( symbol=key, changePercent=metrics['change'], indicators=IndicatorMap( open=metrics.get('open'), close=metrics.get('price'), SMA20=indicators.get("SMA20"), BB_upper=indicators.get("BB.upper"), BB_lower=indicators.get("BB.lower"), EMA50=indicators.get("EMA50"), RSI=indicators.get("RSI"), volume=indicators.get("volume"), ) )) except (TypeError, ZeroDivisionError, KeyError): continue # Sort all coins by change percentage all_coins.sort(key=lambda x: x["changePercent"], reverse=True) return all_coins[:limit]
  • The @mcp.tool() decorator registers the top_losers function as an MCP tool.
    @mcp.tool()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/patch-ridermg48/tradingview-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server