Skip to main content
Glama

Document QA MCP Server

by parikshith49
searchService.ts544 B
import { QdrantClient } from '@qdrant/js-client-rest'; import { getEmbedding } from './aiService'; import dotenv from 'dotenv'; dotenv.config(); const qdrant = new QdrantClient({ url: process.env.QDRANT_URL!, apiKey: process.env.QDRANT_API_KEY!, }); export async function search(query: string) { const queryEmbedding = await getEmbedding(query); const searchResults = await qdrant.search('documents', { vector: queryEmbedding, limit: 3, with_payload: true, }); return searchResults.map(hit => hit.payload?.text); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/parikshith49/document-qa-mcp12'

If you have feedback or need assistance with the MCP directory API, please join our Discord server