from __future__ import annotations
from dataclasses import dataclass
from enum import Enum
from typing import Any, Generic, Literal, get_origin
from mcp.server.elicitation import (
CancelledElicitation,
DeclinedElicitation,
)
from pydantic import BaseModel
from pydantic.json_schema import GenerateJsonSchema, JsonSchemaValue
from pydantic_core import core_schema
from typing_extensions import TypeVar
from fastmcp.utilities.json_schema import compress_schema
from fastmcp.utilities.logging import get_logger
from fastmcp.utilities.types import get_cached_typeadapter
__all__ = [
"AcceptedElicitation",
"CancelledElicitation",
"DeclinedElicitation",
"ElicitConfig",
"ScalarElicitationType",
"get_elicitation_schema",
"handle_elicit_accept",
"parse_elicit_response_type",
]
logger = get_logger(__name__)
T = TypeVar("T", default=Any)
class ElicitationJsonSchema(GenerateJsonSchema):
"""Custom JSON schema generator for MCP elicitation that always inlines enums.
MCP elicitation requires inline enum schemas without $ref/$defs references.
This generator ensures enums are always generated inline for compatibility.
Optionally adds enumNames for better UI display when available.
"""
def generate_inner(self, schema: core_schema.CoreSchema) -> JsonSchemaValue: # type: ignore[override]
"""Override to prevent ref generation for enums and handle list schemas."""
# For enum schemas, bypass the ref mechanism entirely
if schema["type"] == "enum":
# Directly call our custom enum_schema without going through handler
# This prevents the ref/defs mechanism from being invoked
return self.enum_schema(schema) # type: ignore[arg-type]
# For list schemas, check if items are enums
if schema["type"] == "list":
return self.list_schema(schema) # type: ignore[arg-type]
# For all other types, use the default implementation
return super().generate_inner(schema)
def list_schema(self, schema: core_schema.ListSchema) -> JsonSchemaValue:
"""Generate schema for list types, detecting enum items for multi-select."""
items_schema = schema.get("items_schema")
# Check if items are enum/Literal
if items_schema and items_schema.get("type") == "enum":
# Generate array with enum items
items = self.enum_schema(items_schema) # type: ignore[arg-type]
# If items have oneOf pattern, convert to anyOf for multi-select per SEP-1330
if "oneOf" in items:
items = {"anyOf": items["oneOf"]}
return {
"type": "array",
"items": items, # Will be {"enum": [...]} or {"anyOf": [...]}
}
# Check if items are Literal (which Pydantic represents differently)
if items_schema:
# Try to detect Literal patterns
items_result = super().generate_inner(items_schema)
# If it's a const pattern or enum-like, allow it
if (
"const" in items_result
or "enum" in items_result
or "oneOf" in items_result
):
# Convert oneOf to anyOf for multi-select
if "oneOf" in items_result:
items_result = {"anyOf": items_result["oneOf"]}
return {
"type": "array",
"items": items_result,
}
# Default behavior for non-enum arrays
return super().list_schema(schema)
def enum_schema(self, schema: core_schema.EnumSchema) -> JsonSchemaValue:
"""Generate inline enum schema.
Always generates enum pattern: {"enum": [value, ...]}
Titled enums are handled separately via dict-based syntax in ctx.elicit().
"""
# Get the base schema from parent - always use simple enum pattern
return super().enum_schema(schema)
# we can't use the low-level AcceptedElicitation because it only works with BaseModels
class AcceptedElicitation(BaseModel, Generic[T]):
"""Result when user accepts the elicitation."""
action: Literal["accept"] = "accept"
data: T
@dataclass
class ScalarElicitationType(Generic[T]):
value: T
@dataclass
class ElicitConfig:
"""Configuration for an elicitation request.
Attributes:
schema: The JSON schema to send to the client
response_type: The type to validate responses with (None for raw schemas)
is_raw: True if schema was built directly (extract "value" from response)
"""
schema: dict[str, Any]
response_type: type | None
is_raw: bool
def parse_elicit_response_type(response_type: Any) -> ElicitConfig:
"""Parse response_type into schema and handling configuration.
Supports multiple syntaxes:
- None: Empty object schema, expect empty response
- dict: {"low": {"title": "..."}} -> single-select titled enum
- list patterns:
- [["a", "b"]] -> multi-select untitled
- [{"low": {...}}] -> multi-select titled
- ["a", "b"] -> single-select untitled
- list[X] type annotation: multi-select with type
- Scalar types (bool, int, float, str, Literal, Enum): single value
- Other types (dataclass, BaseModel): use directly
"""
if response_type is None:
return ElicitConfig(
schema={"type": "object", "properties": {}},
response_type=None,
is_raw=False,
)
if isinstance(response_type, dict):
return _parse_dict_syntax(response_type)
if isinstance(response_type, list):
return _parse_list_syntax(response_type)
if get_origin(response_type) is list:
return _parse_generic_list(response_type)
if _is_scalar_type(response_type):
return _parse_scalar_type(response_type)
# Other types (dataclass, BaseModel, etc.) - use directly
return ElicitConfig(
schema=get_elicitation_schema(response_type),
response_type=response_type,
is_raw=False,
)
def _is_scalar_type(response_type: Any) -> bool:
"""Check if response_type is a scalar type that needs wrapping."""
return (
response_type in {bool, int, float, str}
or get_origin(response_type) is Literal
or (isinstance(response_type, type) and issubclass(response_type, Enum))
)
def _parse_dict_syntax(d: dict[str, Any]) -> ElicitConfig:
"""Parse dict syntax: {"low": {"title": "..."}} -> single-select titled."""
if not d:
raise ValueError("Dict response_type cannot be empty.")
enum_schema = _dict_to_enum_schema(d, multi_select=False)
return ElicitConfig(
schema={
"type": "object",
"properties": {"value": enum_schema},
"required": ["value"],
},
response_type=None,
is_raw=True,
)
def _parse_list_syntax(lst: list[Any]) -> ElicitConfig:
"""Parse list patterns: [[...]], [{...}], or [...]."""
# [["a", "b", "c"]] -> multi-select untitled
if (
len(lst) == 1
and isinstance(lst[0], list)
and lst[0]
and all(isinstance(item, str) for item in lst[0])
):
return ElicitConfig(
schema={
"type": "object",
"properties": {"value": {"type": "array", "items": {"enum": lst[0]}}},
"required": ["value"],
},
response_type=None,
is_raw=True,
)
# [{"low": {"title": "..."}}] -> multi-select titled
if len(lst) == 1 and isinstance(lst[0], dict) and lst[0]:
enum_schema = _dict_to_enum_schema(lst[0], multi_select=True)
return ElicitConfig(
schema={
"type": "object",
"properties": {"value": {"type": "array", "items": enum_schema}},
"required": ["value"],
},
response_type=None,
is_raw=True,
)
# ["a", "b", "c"] -> single-select untitled
if lst and all(isinstance(item, str) for item in lst):
choice_literal = Literal[tuple(lst)] # type: ignore[valid-type]
wrapped = ScalarElicitationType[choice_literal] # type: ignore[valid-type]
return ElicitConfig(
schema=get_elicitation_schema(wrapped), # type: ignore[arg-type]
response_type=wrapped, # type: ignore[assignment]
is_raw=False,
)
raise ValueError(f"Invalid list response_type format. Received: {lst}")
def _parse_generic_list(response_type: Any) -> ElicitConfig:
"""Parse list[X] type annotation -> multi-select."""
wrapped = ScalarElicitationType[response_type] # type: ignore[valid-type]
return ElicitConfig(
schema=get_elicitation_schema(wrapped), # type: ignore[arg-type]
response_type=wrapped, # type: ignore[assignment]
is_raw=False,
)
def _parse_scalar_type(response_type: Any) -> ElicitConfig:
"""Parse scalar types (bool, int, float, str, Literal, Enum)."""
wrapped = ScalarElicitationType[response_type] # type: ignore[valid-type]
return ElicitConfig(
schema=get_elicitation_schema(wrapped), # type: ignore[arg-type]
response_type=wrapped, # type: ignore[assignment]
is_raw=False,
)
def handle_elicit_accept(
config: ElicitConfig, content: Any
) -> AcceptedElicitation[Any]:
"""Handle an accepted elicitation response.
Args:
config: The elicitation configuration from parse_elicit_response_type
content: The response content from the client
Returns:
AcceptedElicitation with the extracted/validated data
"""
# For raw schemas (dict/nested-list syntax), extract value directly
if config.is_raw:
if not isinstance(content, dict) or "value" not in content:
raise ValueError("Elicitation response missing required 'value' field.")
return AcceptedElicitation[Any](data=content["value"])
# For typed schemas, validate with Pydantic
if config.response_type is not None:
type_adapter = get_cached_typeadapter(config.response_type)
validated_data = type_adapter.validate_python(content)
if isinstance(validated_data, ScalarElicitationType):
return AcceptedElicitation[Any](data=validated_data.value)
return AcceptedElicitation[Any](data=validated_data)
# For None response_type, expect empty response
if content:
raise ValueError(
f"Elicitation expected an empty response, but received: {content}"
)
return AcceptedElicitation[dict[str, Any]](data={})
def _dict_to_enum_schema(
enum_dict: dict[str, dict[str, str]], multi_select: bool = False
) -> dict[str, Any]:
"""Convert dict enum to SEP-1330 compliant schema pattern.
Args:
enum_dict: {"low": {"title": "Low Priority"}, "medium": {"title": "Medium Priority"}}
multi_select: If True, use anyOf pattern; if False, use oneOf pattern
Returns:
{"type": "string", "oneOf": [...]} for single-select
{"anyOf": [...]} for multi-select (used as array items)
"""
pattern_key = "anyOf" if multi_select else "oneOf"
pattern = []
for value, metadata in enum_dict.items():
title = metadata.get("title", value)
pattern.append({"const": value, "title": title})
result: dict[str, Any] = {pattern_key: pattern}
if not multi_select:
result["type"] = "string"
return result
def get_elicitation_schema(response_type: type[T]) -> dict[str, Any]:
"""Get the schema for an elicitation response.
Args:
response_type: The type of the response
"""
# Use custom schema generator that inlines enums for MCP compatibility
schema = get_cached_typeadapter(response_type).json_schema(
schema_generator=ElicitationJsonSchema
)
schema = compress_schema(schema)
# Validate the schema to ensure it follows MCP elicitation requirements
validate_elicitation_json_schema(schema)
return schema
def validate_elicitation_json_schema(schema: dict[str, Any]) -> None:
"""Validate that a JSON schema follows MCP elicitation requirements.
This ensures the schema is compatible with MCP elicitation requirements:
- Must be an object schema
- Must only contain primitive field types (string, number, integer, boolean)
- Must be flat (no nested objects or arrays of objects)
- Allows const fields (for Literal types) and enum fields (for Enum types)
- Only primitive types and their nullable variants are allowed
Args:
schema: The JSON schema to validate
Raises:
TypeError: If the schema doesn't meet MCP elicitation requirements
"""
ALLOWED_TYPES = {"string", "number", "integer", "boolean"}
# Check that the schema is an object
if schema.get("type") != "object":
raise TypeError(
f"Elicitation schema must be an object schema, got type '{schema.get('type')}'. "
"Elicitation schemas are limited to flat objects with primitive properties only."
)
properties = schema.get("properties", {})
for prop_name, prop_schema in properties.items():
prop_type = prop_schema.get("type")
# Handle nullable types
if isinstance(prop_type, list):
if "null" in prop_type:
prop_type = [t for t in prop_type if t != "null"]
if len(prop_type) == 1:
prop_type = prop_type[0]
elif prop_schema.get("nullable", False):
continue # Nullable with no other type is fine
# Handle const fields (Literal types)
if "const" in prop_schema:
continue # const fields are allowed regardless of type
# Handle enum fields (Enum types)
if "enum" in prop_schema:
continue # enum fields are allowed regardless of type
# Handle references to definitions (like Enum types)
if "$ref" in prop_schema:
# Get the referenced definition
ref_path = prop_schema["$ref"]
if ref_path.startswith("#/$defs/"):
def_name = ref_path[8:] # Remove "#/$defs/" prefix
ref_def = schema.get("$defs", {}).get(def_name, {})
# If the referenced definition has an enum, it's allowed
if "enum" in ref_def:
continue
# If the referenced definition has a type that's allowed, it's allowed
ref_type = ref_def.get("type")
if ref_type in ALLOWED_TYPES:
continue
# If we can't determine what the ref points to, reject it for safety
raise TypeError(
f"Elicitation schema field '{prop_name}' contains a reference '{ref_path}' "
"that could not be validated. Only references to enum types or primitive types are allowed."
)
# Handle union types (oneOf/anyOf)
if "oneOf" in prop_schema or "anyOf" in prop_schema:
union_schemas = prop_schema.get("oneOf", []) + prop_schema.get("anyOf", [])
for union_schema in union_schemas:
# Allow const and enum in unions
if "const" in union_schema or "enum" in union_schema:
continue
union_type = union_schema.get("type")
if union_type not in ALLOWED_TYPES:
raise TypeError(
f"Elicitation schema field '{prop_name}' has union type '{union_type}' which is not "
f"a primitive type. Only {ALLOWED_TYPES} are allowed in elicitation schemas."
)
continue
# Check for arrays before checking primitive types
if prop_type == "array":
items_schema = prop_schema.get("items", {})
if items_schema.get("type") == "object":
raise TypeError(
f"Elicitation schema field '{prop_name}' is an array of objects, but arrays of objects are not allowed. "
"Elicitation schemas must be flat objects with primitive properties only."
)
# Allow arrays with enum patterns (for multi-select)
if "enum" in items_schema:
continue # Allowed: {"type": "array", "items": {"enum": [...]}}
# Allow arrays with oneOf/anyOf const patterns (SEP-1330)
if "oneOf" in items_schema or "anyOf" in items_schema:
union_schemas = items_schema.get("oneOf", []) + items_schema.get(
"anyOf", []
)
if union_schemas and all("const" in s for s in union_schemas):
continue # Allowed: {"type": "array", "items": {"anyOf": [{"const": ...}, ...]}}
# Reject other array types (e.g., arrays of primitives without enum pattern)
raise TypeError(
f"Elicitation schema field '{prop_name}' is an array, but arrays are only allowed "
"when items are enums (for multi-select). Only enum arrays are supported in elicitation schemas."
)
# Check for nested objects (not allowed)
if prop_type == "object":
raise TypeError(
f"Elicitation schema field '{prop_name}' is an object, but nested objects are not allowed. "
"Elicitation schemas must be flat objects with primitive properties only."
)
# Check if it's a primitive type
if prop_type not in ALLOWED_TYPES:
raise TypeError(
f"Elicitation schema field '{prop_name}' has type '{prop_type}' which is not "
f"a primitive type. Only {ALLOWED_TYPES} are allowed in elicitation schemas."
)