import collections.abc
import inspect
import json
import operator
import re
import sys
import typing
from collections.abc import Callable, Iterable, Sequence
from datetime import date, datetime, timedelta
from enum import Enum, Flag
from functools import partial, reduce
from typing import (
TYPE_CHECKING,
Any,
Literal,
TypeVar,
Union,
get_args,
get_origin,
)
if sys.version_info >= (3, 12):
from typing import TypeAliasType
else:
TypeAliasType = None
from cyclopts.annotations import is_annotated, is_enum_flag, is_nonetype, is_union, resolve
from cyclopts.exceptions import CoercionError, ValidationError
from cyclopts.field_info import FieldInfo, get_field_infos
from cyclopts.utils import UNSET, default_name_transform, grouper, is_builtin, is_class_and_subclass
if sys.version_info >= (3, 12): # pragma: no cover
from typing import TypeAliasType
else: # pragma: no cover
TypeAliasType = None
if TYPE_CHECKING:
from cyclopts.argument import Token
T = TypeVar("T")
E = TypeVar("E", bound=Enum)
F = TypeVar("F", bound=Flag)
# Mapping from bare concrete types to their default parameterized versions.
# Used when type parameters are not specified (e.g., bare `list` becomes `list[str]`).
_implicit_iterable_type_mapping: dict[type, type] = {
frozenset: frozenset[str],
list: list[str],
set: set[str],
tuple: tuple[str, ...],
dict: dict[str, str],
}
# Mapping from abstract collection types to their concrete implementations.
# Used to convert abstract types like collections.abc.Set to concrete types like set.
_abstract_to_concrete_type_mapping: dict[type, type] = {
Iterable: list,
typing.Sequence: list,
Sequence: list,
collections.abc.Set: set,
collections.abc.MutableSet: set,
collections.abc.MutableSequence: list,
collections.abc.Mapping: dict,
collections.abc.MutableMapping: dict,
}
ITERABLE_TYPES = {
Iterable,
typing.Sequence,
Sequence,
frozenset,
list,
set,
tuple,
}
NestedCliArgs = dict[str, Union[Sequence[str], "NestedCliArgs"]]
def _bool(s: str) -> bool:
s = s.lower()
if s in {"no", "n", "0", "false", "f"}:
return False
elif s in {"yes", "y", "1", "true", "t"}:
return True
else:
# Cyclopts is a little bit conservative when coercing strings into boolean.
raise CoercionError(target_type=bool)
def _int(s: str) -> int:
s = s.lower()
if s.startswith("0x"):
return int(s, 16)
elif s.startswith("0o"):
return int(s, 8)
elif s.startswith("0b"):
return int(s, 2)
elif "." in s:
# Casting to a float first allows for things like "30.0"
# We handle this conditionally because very large integers can lose
# meaningful precision when cast to a float.
return int(round(float(s)))
else:
return int(s)
def _bytes(s: str) -> bytes:
return bytes(s, encoding="utf8")
def _bytearray(s: str) -> bytearray:
return bytearray(_bytes(s))
def _date(s: str) -> date:
"""Parse a date string.
Returns
-------
datetime.date
"""
return date.fromisoformat(s)
def _datetime(s: str) -> datetime:
"""Parse a datetime string.
Returns
-------
datetime.datetime
"""
try:
return datetime.fromisoformat(s)
except ValueError:
# Fallback for space-separated format (not ISO 8601 compliant)
# Python 3.11+ fromisoformat() accepts spaces, but 3.10 doesn't
# Convert space to 'T' to make it ISO-compliant
return datetime.fromisoformat(s.strip().replace(" ", "T", 1))
def _timedelta(s: str) -> timedelta:
"""Parse a timedelta string."""
negative = False
if s.startswith("-"):
negative = True
s = s[1:]
matches = re.findall(r"((\d+\.\d+|\d+)([smhdwMy]))", s)
if not matches:
raise ValueError(f"Could not parse duration string: {s}")
seconds = 0
for _, value, unit in matches:
value = float(value)
if unit == "s":
seconds += value
elif unit == "m":
seconds += value * 60
elif unit == "h":
seconds += value * 3600
elif unit == "d":
seconds += value * 86400
elif unit == "w":
seconds += value * 604800
elif unit == "M":
# Approximation: 1 month = 30 days
seconds += value * 2592000
elif unit == "y":
# Approximation: 1 year = 365 days
seconds += value * 31536000
if negative:
seconds = -seconds
return timedelta(seconds=seconds)
def get_enum_member(
type_: type[E],
token: Union["Token", str],
name_transform: Callable[[str], str],
) -> E:
"""Match a token's value to an enum's member.
Applies ``name_transform`` to both the value and the member.
"""
from cyclopts.argument import Token
is_token = isinstance(token, Token)
value = token.value if is_token else token
value_transformed = name_transform(value)
for name, member in type_.__members__.items():
if name_transform(name) == value_transformed:
return member
raise CoercionError(
token=token if is_token else None,
target_type=type_,
)
def convert_enum_flag(
enum_type: type[F],
tokens: Iterable[str] | Iterable["Token"],
name_transform: Callable[[str], str],
) -> F:
"""Convert tokens to a Flag enum value.
Parameters
----------
enum_type : type[F]
The Flag enum type to convert to.
tokens : Iterable[str] | Iterable[Token]
The tokens to convert. Can be member names or :class:`Token` objects.
name_transform : Callable[[str], str] | None
Function to transform names for comparison.
Returns
-------
F
The combined flag value.
Raises
------
CoercionError
If a token is not a valid flag member.
"""
return reduce(
operator.or_,
(get_enum_member(enum_type, token, name_transform) for token in tokens),
enum_type(0),
)
# For types that need more logic than just invoking their type
_converters: dict[Any, Callable] = {
bool: _bool,
int: _int,
bytes: _bytes,
bytearray: _bytearray,
date: _date,
datetime: _datetime,
timedelta: _timedelta,
}
def _convert_tuple(
type_: type[Any],
*tokens: "Token",
converter: Callable[[type, str], Any] | None,
name_transform: Callable[[str], str],
) -> tuple:
convert = partial(_convert, converter=converter, name_transform=name_transform)
inner_types = tuple(x for x in get_args(type_) if x is not ...)
inner_token_count, consume_all = token_count(type_)
# Elements like boolean-flags will have an inner_token_count of 0.
inner_token_count = max(inner_token_count, 1)
if consume_all:
# variable-length tuple (list-like)
remainder = len(tokens) % inner_token_count
if remainder:
raise CoercionError(
msg=f"Incorrect number of arguments: expected multiple of {inner_token_count} but got {len(tokens)}."
)
if len(inner_types) == 1:
inner_type = inner_types[0]
elif len(inner_types) == 0:
inner_type = str
else:
raise ValueError("A tuple must have 0 or 1 inner-types.")
return tuple(
convert(inner_type, chunk[0] if inner_token_count == 1 else chunk)
for chunk in grouper(tokens, inner_token_count)
)
else:
# Fixed-length tuple
if inner_token_count != len(tokens):
raise CoercionError(
msg=f"Incorrect number of arguments: expected {inner_token_count} but got {len(tokens)}."
)
args_per_convert = [token_count(x)[0] for x in inner_types]
it = iter(tokens)
batched = [[next(it) for _ in range(size)] for size in args_per_convert]
batched = [elem[0] if len(elem) == 1 else elem for elem in batched]
out = tuple(convert(inner_type, arg) for inner_type, arg in zip(inner_types, batched, strict=False))
return out
def _convert_json(
type_: Any,
data: dict,
field_infos: dict,
converter: Callable | None,
name_transform: Callable[[str], str],
):
"""Convert JSON dict to dataclass with proper type conversion for fields.
Parameters
----------
type_ : Type
The dataclass type to create.
data : dict
The JSON dictionary containing field values.
field_infos : dict
Field information from the dataclass.
converter : Callable | None
Optional converter function.
name_transform : Callable[[str], str]
Function to transform field names.
Returns
-------
Instance of type_ with properly converted field values.
"""
from cyclopts.token import Token
converted_data = {}
for field_name, field_info in field_infos.items():
if field_name in data:
value = data[field_name]
# Convert the value to the proper type
if value is not None and not is_class_and_subclass(field_info.hint, str):
# Create a token for the value and convert it
token = Token(value=json.dumps(value) if isinstance(value, dict | list) else str(value))
# Always attempt conversion, let errors propagate for consistency
converted_value = convert(field_info.hint, [token], converter, name_transform)
else:
converted_value = value
converted_data[field_name] = converted_value
# Create the dataclass with converted values
return type_(**converted_data)
def _create_json_decode_error_message(
token: "Token",
type_: Any,
error: json.JSONDecodeError,
) -> str:
"""Create a helpful error message for JSON decode errors.
Parameters
----------
token : Token
The token containing the invalid JSON.
type_ : Type
The target type we were trying to convert to.
error : json.JSONDecodeError
The JSON decode error that occurred.
Returns
-------
str
A formatted error message with context and hints.
"""
value_str = token.value.strip()
# Try to provide context around the error
error_pos = error.pos if hasattr(error, "pos") else error.colno - 1 if hasattr(error, "colno") else 0
# Create a snippet showing the error location
snippet_start = max(0, error_pos - 20)
snippet_end = min(len(value_str), error_pos + 20)
snippet = value_str[snippet_start:snippet_end]
# Add markers if we truncated
if snippet_start > 0:
snippet = "..." + snippet
if snippet_end < len(value_str):
snippet = snippet + "..."
# Calculate where the error marker should point
marker_pos = error_pos - snippet_start
if snippet_start > 0:
marker_pos += 3 # Account for "..."
# Common error patterns with helpful hints
hint = ""
if re.search(r"\bTrue\b", value_str):
hint = "\n Hint: Use lowercase 'true' instead of Python's True"
elif re.search(r"\bFalse\b", value_str):
hint = "\n Hint: Use lowercase 'false' instead of Python's False"
elif re.search(r"\bNone\b", value_str):
hint = "\n Hint: Use 'null' instead of Python's None"
elif "'" in value_str:
hint = "\n Hint: JSON requires double quotes, not single quotes"
return f"Invalid JSON for {type_.__name__}:\n {snippet}\n {' ' * marker_pos}^ {error.msg}{hint}"
def instantiate_from_dict(type_: type[T], data: dict[str, Any]) -> T:
"""Instantiate a type with proper handling of parameter kinds.
Respects POSITIONAL_ONLY, KEYWORD_ONLY, and POSITIONAL_OR_KEYWORD parameter kinds
when constructing the object.
This function is necessary because `inspect.signature().bind(**data)` has the same
limitation we're solving: it cannot accept positional-only parameters as keyword
arguments. For example, `def __init__(self, a, /, b)` requires `a` to be passed
positionally, but when we have a dict `{"a": 1, "b": 2}`, we need to transform
this into the call `type_(1, b=2)`.
Parameters
----------
type_ : type[T]
The type to instantiate.
data : dict[str, Any]
Dictionary mapping field names to values.
Returns
-------
T
Instance of type_ constructed from data.
"""
field_infos = get_field_infos(type_)
if not field_infos:
return type_(**data)
pos_args = []
kwargs = {}
for field_name, value in data.items():
field_info = field_infos.get(field_name)
if field_info and field_info.kind == FieldInfo.POSITIONAL_ONLY:
pos_args.append((field_name, value))
else:
kwargs[field_name] = value
# Sort positional args by their order in field_infos
field_names_order = list(field_infos.keys())
pos_args.sort(key=lambda x: field_names_order.index(x[0]))
return type_(*(v for _, v in pos_args), **kwargs)
def _convert_structured_type(
type_: type[T],
token: Sequence["Token"],
field_infos: dict[str, "FieldInfo"],
convert: Callable,
) -> T:
"""Convert tokens to a structured type with proper positional/keyword argument handling.
Respects the parameter kind of each field:
- POSITIONAL_ONLY: passed as positional argument
- KEYWORD_ONLY or POSITIONAL_OR_KEYWORD: passed as keyword argument
This correctly handles types with keyword-only fields (e.g., dataclasses with kw_only=True).
Parameters
----------
type_ : type[T]
The target structured type to instantiate.
token : Sequence[Token]
The tokens to convert.
field_infos : dict[str, FieldInfo]
Field information for the structured type.
convert : Callable
Conversion function for nested types.
Returns
-------
T
Instance of type_ constructed from the tokens.
"""
i = 0
data = {}
hint = type_
for field_name, field_info in field_infos.items():
hint = field_info.hint
# Convert the token(s) for this field
if is_class_and_subclass(hint, str): # Avoids infinite recursion
value = token[i].value
i += 1
should_break = False
else:
tokens_per_element, consume_all = token_count(hint)
if tokens_per_element == 1:
value = convert(hint, token[i])
i += 1
else:
value = convert(hint, token[i : i + tokens_per_element])
i += tokens_per_element
should_break = consume_all
data[field_name] = value
# Handle consume_all or end of tokens
if should_break:
break
if i == len(token):
break
assert i == len(token)
return instantiate_from_dict(type_, data)
def _convert(
type_,
token: Union["Token", Sequence["Token"]],
*,
converter: Callable[[Any, str], Any] | None,
name_transform: Callable[[str], str],
):
"""Inner recursive conversion function for public ``convert``.
Parameters
----------
converter: Callable
name_transform: Callable
"""
from cyclopts.argument import Token
from cyclopts.parameter import Parameter
converter_needs_token = False
if is_annotated(type_):
from cyclopts.parameter import Parameter
type_, cparam = Parameter.from_annotation(type_)
if cparam.converter:
converter_needs_token = True
def converter_with_token(t_, value):
assert cparam.converter
# Resolve string converters to methods on the type
resolved_converter = cparam.converter
if isinstance(resolved_converter, str):
resolved_converter = getattr(t_, resolved_converter)
# Detect bound methods (classmethods/instance methods)
# Bound methods already have their first parameter bound
if inspect.ismethod(resolved_converter):
# Call with just tokens - cls/self already bound
return resolved_converter((value,))
else:
# Regular function - pass type and tokens
return resolved_converter(t_, (value,))
converter = converter_with_token
if cparam.name_transform:
name_transform = cparam.name_transform
else:
cparam = None
convert = partial(_convert, converter=converter, name_transform=name_transform)
convert_tuple = partial(_convert_tuple, converter=converter, name_transform=name_transform)
origin_type = get_origin(type_)
# Normalize abstract origin types to concrete types early
# (e.g., collections.abc.Set -> set) so we only check ITERABLE_TYPES later
if origin_type in _abstract_to_concrete_type_mapping:
origin_type = _abstract_to_concrete_type_mapping[origin_type]
# Inner types **may** be ``Annotated``
inner_types = get_args(type_)
if type_ is dict:
out = convert(dict[str, str], token)
elif type_ in _implicit_iterable_type_mapping:
out = convert(_implicit_iterable_type_mapping[type_], token)
elif type_ in _abstract_to_concrete_type_mapping:
# Bare abstract type (e.g., collections.abc.Set with no [T])
# Convert to default parameterized concrete type
concrete_type = _abstract_to_concrete_type_mapping[type_]
default_param = _implicit_iterable_type_mapping.get(concrete_type, concrete_type)
out = convert(default_param, token)
elif TypeAliasType is not None and isinstance(type_, TypeAliasType):
out = convert(type_.__value__, token)
elif is_union(origin_type):
for t in inner_types:
if is_nonetype(t):
continue
try:
out = convert(t, token)
break
except Exception:
pass
else:
if isinstance(token, Sequence):
raise ValueError # noqa: TRY004
raise CoercionError(token=token, target_type=type_)
elif origin_type is Literal:
# Try coercing the token into each allowed Literal value (left-to-right).
last_coercion_error = None
for choice in get_args(type_):
try:
res = convert(type(choice), token)
except CoercionError as e:
last_coercion_error = e
continue
if res == choice:
out = res
break
else:
if last_coercion_error:
last_coercion_error.target_type = type_
raise last_coercion_error
else:
raise CoercionError(token=token[0] if isinstance(token, Sequence) else token, target_type=type_)
elif origin_type is tuple:
if isinstance(token, Token):
# E.g. Tuple[str] (Annotation: tuple containing a single string)
out = convert_tuple(type_, token, converter=converter)
else:
out = convert_tuple(type_, *token, converter=converter)
elif origin_type in ITERABLE_TYPES:
# NOT including tuple; handled in ``origin_type is tuple`` body above.
# Note: origin_type has already been normalized from abstract to concrete
count, _ = token_count(inner_types[0])
if not isinstance(token, Sequence):
raise ValueError
# Check if tokens are JSON strings
inner_type = inner_types[0]
if (
count > 1
and any(isinstance(t, Token) and t.value.strip().startswith("{") for t in token)
and inner_type is not str
):
# Each token is a complete JSON representation of the dataclass
gen = token
elif count > 1:
gen = zip(*[iter(token)] * count, strict=False)
else:
gen = token
out = origin_type(convert(inner_types[0], e) for e in gen)
elif is_class_and_subclass(type_, Flag):
# TODO: this might never execute since enum.Flag is now handled in ``convert``.
out = convert_enum_flag(type_, token if isinstance(token, Sequence) else [token], name_transform)
elif is_class_and_subclass(type_, Enum):
if isinstance(token, Sequence):
raise ValueError
if converter is None:
out = get_enum_member(type_, token, name_transform)
else:
out = converter(type_, token.value)
else:
field_infos = get_field_infos(type_)
# Hope that if there is no field_info, that it takes `*args` and would be happy with a single ``str`` input.
# This is common for many types, such as libraries that try to mimic pathlib.Path interface.
# TODO: This doesn't respect the type-annotation of ``*args``.
if is_builtin(type_) or not field_infos:
assert isinstance(token, Token)
try:
if token.implicit_value is not UNSET:
out = token.implicit_value
elif converter is None:
out = _converters.get(type_, type_)(token.value) # pyright: ignore[reportOptionalCall]
elif converter_needs_token:
out = converter(type_, token) # pyright: ignore[reportArgumentType]
else:
out = converter(type_, token.value)
except CoercionError as e:
if e.target_type is None:
e.target_type = type_
if e.token is None:
e.token = token
raise
except ValueError:
raise CoercionError(token=token, target_type=type_) from None
else:
# Convert it into a user-supplied class.
# First check if we have a single token that's a JSON string
if isinstance(token, Token) and token.value.strip().startswith("{") and type_ is not str:
try:
data = json.loads(token.value)
if not isinstance(data, dict):
# JSON was valid but didn't produce a dict (e.g., it was an array or scalar)
raise TypeError # noqa: TRY301
# Convert dict to dataclass with proper type conversion
out = _convert_json(type_, data, field_infos, converter, name_transform)
except json.JSONDecodeError as e:
# Create helpful error message for invalid JSON
msg = _create_json_decode_error_message(token, type_, e)
raise CoercionError(msg=msg, token=token, target_type=type_) from e
except TypeError:
# Fall back to positional argument parsing
if not isinstance(token, Sequence):
token = [token]
out = _convert_structured_type(type_, token, field_infos, convert)
else:
# Standard positional argument parsing
if not isinstance(token, Sequence):
token = [token]
out = _convert_structured_type(type_, token, field_infos, convert)
if cparam:
# An inner type may have an independent Parameter annotation;
# e.g.:
# Uint8 = Annotated[int, ...]
# rgb: tuple[Uint8, Uint8, Uint8]
try:
for validator in cparam.validator: # pyright: ignore
validator(type_, out)
except (AssertionError, ValueError, TypeError) as e:
raise ValidationError(exception_message=e.args[0] if e.args else "", value=out) from e
return out
def convert(
type_: Any,
tokens: Sequence[str] | Sequence["Token"] | NestedCliArgs,
converter: Callable[[type, str], Any] | None = None,
name_transform: Callable[[str], str] | None = None,
):
"""Coerce variables into a specified type.
Internally used to coercing string CLI tokens into python builtin types.
Externally, may be useful in a custom converter.
See Cyclopt's automatic coercion rules :doc:`/rules`.
If ``type_`` **is not** iterable, then each element of ``tokens`` will be converted independently.
If there is more than one element, then the return type will be a ``Tuple[type_, ...]``.
If there is a single element, then the return type will be ``type_``.
If ``type_`` **is** iterable, then all elements of ``tokens`` will be collated.
Parameters
----------
type_: Type
A type hint/annotation to coerce ``*args`` into.
tokens: Union[Sequence[str], NestedCliArgs]
String tokens to coerce.
Generally, either a list of strings, or a dictionary of list of strings (recursive).
Each leaf in the dictionary tree should be a list of strings.
converter: Optional[Callable[[Type, str], Any]]
An optional function to convert tokens to the inner-most types.
The converter should have signature:
.. code-block:: python
def converter(type_: type, value: str) -> Any:
"Perform conversion of string token."
This allows to use the :func:`convert` function to handle the the difficult task
of traversing lists/tuples/unions/etc, while leaving the final conversion logic to
the caller.
name_transform: Optional[Callable[[str], str]]
Currently only used for ``Enum`` type hints.
A function that transforms enum names and CLI values into a normalized format.
The function should have signature:
.. code-block:: python
def name_transform(s: str) -> str:
"Perform name transform."
where the returned value is the name to be used on the CLI.
If ``None``, defaults to ``cyclopts.default_name_transform``.
Returns
-------
Any
Coerced version of input ``*args``.
"""
from cyclopts.argument import Token
if not tokens:
raise ValueError
if not isinstance(tokens, dict) and isinstance(tokens[0], str):
tokens = tuple(Token(value=str(x)) for x in tokens)
if name_transform is None:
name_transform = default_name_transform
convert_priv = partial(_convert, converter=converter, name_transform=name_transform)
convert_tuple = partial(_convert_tuple, converter=converter, name_transform=name_transform)
type_ = resolve(type_)
if type_ is Any:
type_ = str
type_ = _implicit_iterable_type_mapping.get(type_, type_)
# Handle bare abstract types (e.g., collections.abc.Set without [T])
# Convert to their default parameterized concrete versions
if type_ in _abstract_to_concrete_type_mapping:
concrete_type = _abstract_to_concrete_type_mapping[type_]
type_ = _implicit_iterable_type_mapping.get(concrete_type, concrete_type)
origin_type = get_origin(type_)
# Normalize abstract origin types to concrete types early
if origin_type in _abstract_to_concrete_type_mapping:
origin_type = _abstract_to_concrete_type_mapping[origin_type]
maybe_origin_type = origin_type or type_
if origin_type is tuple:
return convert_tuple(type_, *tokens) # pyright: ignore
elif maybe_origin_type in ITERABLE_TYPES:
return convert_priv(type_, tokens) # pyright: ignore
elif maybe_origin_type is dict:
if not isinstance(tokens, dict):
raise ValueError # Programming error
try:
value_type = get_args(type_)[1]
except IndexError:
value_type = str
dict_converted = {
k: convert(value_type, v, converter=converter, name_transform=name_transform) for k, v in tokens.items()
}
return _converters.get(maybe_origin_type, maybe_origin_type)(**dict_converted)
elif isinstance(tokens, dict):
raise ValueError(f"Dictionary of tokens provided for unknown {type_!r}.") # Programming error
elif is_enum_flag(maybe_origin_type):
# Unlike other types that can accept multiple tokens, the result is not a sequence, it's a single
# enum.Flag object.
return convert_enum_flag(maybe_origin_type, tokens, name_transform)
else:
if len(tokens) == 1:
return convert_priv(type_, tokens[0]) # pyright: ignore
tokens_per_element, _ = token_count(type_)
if tokens_per_element == 1:
return [convert_priv(type_, item) for item in tokens] # pyright: ignore
elif len(tokens) == tokens_per_element:
return convert_priv(type_, tokens) # pyright: ignore
else:
raise NotImplementedError("Unreachable?")
def token_count(type_: Any, skip_converter_params: bool = False) -> tuple[int, bool]:
"""The number of tokens after a keyword the parameter should consume.
Parameters
----------
type_: Type
A type hint/annotation to infer token_count from if not explicitly specified.
skip_converter_params: bool
If True, don't extract converter parameters from __cyclopts__.
Used to prevent infinite recursion when determining consume_all behavior.
Returns
-------
int
Number of tokens to consume.
bool
If this is ``True`` and positional, consume all remaining tokens.
The returned number of tokens constitutes a single element of the iterable-to-be-parsed.
"""
# Check for explicit n_tokens in Parameter annotation before resolving
# This handles nested cases like tuple[Annotated[str, Parameter(n_tokens=2)], int]
from cyclopts.parameter import get_parameters
resolved_type, parameters = get_parameters(type_, skip_converter_params=skip_converter_params)
for param in parameters:
if param.n_tokens is not None:
if param.n_tokens == -1:
return 1, True
else:
# Recursively determine consume_all from the type's natural structure.
# Only recurse if the type has changed (e.g., Annotated wrapper was removed).
# If resolved_type is the same as type_, recursing would cause infinite loop.
if resolved_type is not type_:
# Skip converter params to avoid infinite recursion when converter is decorated
# with @Parameter(n_tokens=...) and attached to a class via @Parameter(converter=...).
_, consume_all_from_type = token_count(resolved_type, skip_converter_params=True)
else:
# Type didn't change (e.g., class decorated with @Parameter(n_tokens=...))
# Can't determine natural consume_all by recursing on same type
consume_all_from_type = False
return param.n_tokens, consume_all_from_type
type_ = resolved_type
origin_type = get_origin(type_)
# Normalize abstract origin types to concrete types early
if origin_type in _abstract_to_concrete_type_mapping:
origin_type = _abstract_to_concrete_type_mapping[origin_type]
# Handle bare abstract types like bare concrete types
if type_ in _abstract_to_concrete_type_mapping:
concrete_type = _abstract_to_concrete_type_mapping[type_]
type_ = _implicit_iterable_type_mapping.get(concrete_type, concrete_type)
origin_type = get_origin(type_)
if (origin_type or type_) is tuple:
args = get_args(type_)
if args:
return sum(token_count(x)[0] for x in args if x is not ...), ... in args
else:
return 1, True
elif (origin_type or type_) is bool:
return 0, False
elif type_ in ITERABLE_TYPES or (origin_type in ITERABLE_TYPES and len(get_args(type_)) == 0):
return 1, True
elif is_enum_flag(type_):
return 1, True
elif origin_type in ITERABLE_TYPES and len(get_args(type_)):
return token_count(get_args(type_)[0])[0], True
elif TypeAliasType is not None and isinstance(type_, TypeAliasType):
return token_count(type_.__value__)
elif is_union(type_):
sub_args = get_args(type_)
token_count_target = token_count(sub_args[0])
for sub_type_ in sub_args[1:]:
this = token_count(sub_type_)
if this != token_count_target:
raise ValueError(
f"Cannot Union types that consume different numbers of tokens: {sub_args[0]} {sub_type_}"
)
return token_count_target
elif is_builtin(type_):
# Many builtins actually take in VAR_POSITIONAL when we really just want 1 argument.
return 1, False
else:
# This is usually/always a custom user-defined class.
field_infos = get_field_infos(type_)
count, consume_all = 0, False
for value in field_infos.values():
if value.kind is value.VAR_POSITIONAL:
consume_all = True
elif not value.required:
continue
elem_count, elem_consume_all = token_count(value.hint)
count += elem_count
consume_all |= elem_consume_all
# classes like ``enum.Enum`` can slip through here with a 0 count.
if not count:
return 1, False
return count, consume_all