Skip to main content
Glama

Fegis

Fegis does 3 things:

  1. Easy to write tools - Write prompts in YAML format. Tool schemas use flexible natural language instructions.

  2. Structured data from tool calls saved in a vector database - Every tool use is automatically stored in Qdrant with full context.

  3. Search - AI can search through all previous tool usage using semantic similarity, filters, or direct lookup.

Quick Start

# Install uv # Windows winget install --id=astral-sh.uv -e # macOS/Linux curl -LsSf https://astral.sh/uv/install.sh | sh # Clone git clone https://github.com/p-funk/fegis.git # Start Qdrant docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant:latest

Related MCP server: Figma MCP Server

Configure Claude Desktop

Update claude_desktop_config.json:

{ "mcpServers": { "fegis": { "command": "uv", "args": [ "--directory", "/absolute/path/to/fegis", "run", "fegis" ], "env": { "QDRANT_URL": "http://localhost:6333", "QDRANT_API_KEY": "", "COLLECTION_NAME": "fegis_memory", "EMBEDDING_MODEL": "BAAI/bge-small-en", "ARCHETYPE_PATH": "/absolute/path/to/fegis-wip/archetypes/default.yaml", "AGENT_ID": "claude_desktop" } } } }

Restart Claude Desktop. You'll have 7 new tools available including SearchMemory.

How It Works

1. Tools from YAML

parameters: BiasScope: description: "Range of bias detection to apply" examples: [confirmation, availability, anchoring, systematic, comprehensive] IntrospectionDepth: description: "How deeply to examine internal reasoning processes" examples: [surface, moderate, deep, exhaustive, meta_recursive] tools: BiasDetector: description: "Identify reasoning blind spots, cognitive biases, and systematic errors in AI thinking patterns through structured self-examination" parameters: BiasScope: IntrospectionDepth: frames: identified_biases: type: List required: true reasoning_patterns: type: List required: true alternative_perspectives: type: List required: true

2. Automatic Memory Storage

Every tool invocation gets stored with:

  • Tool name and parameters used

  • Complete input and output

  • Timestamp and session context

  • Vector embeddings for semantic search

3. SearchMemory Tool

"Use SearchMemory and find my analysis of privacy concerns" "Use SearchMemory and what creative ideas did I generate last week?" "Use SearchMemory and show me all UncertaintyNavigator results" "Use SearchMemory and search for memories about decision-making"

Available Archetypes

  • archetypes/default.yaml - Cognitive analysis tools (UncertaintyNavigator, BiasDetector, etc.)

  • archetypes/simple_example.yaml - Basic example tools

  • archetypes/emoji_mind.yaml - Symbolic reasoning with emojis

  • archetypes/slime_mold.yaml - Network optimization tools

  • archetypes/vibe_surfer.yaml - Web exploration tools

Configuration

Required environment variables:

  • ARCHETYPE_PATH - Path to YAML archetype file

  • QDRANT_URL - Qdrant database URL (default: http://localhost:6333)

Optional environment variables:

  • COLLECTION_NAME - Qdrant collection name (default: fegis_memory)

  • AGENT_ID - Identifier for this agent (default: default-agent)

  • EMBEDDING_MODEL - Dense embedding model (default: BAAI/bge-small-en)

  • QDRANT_API_KEY - API key for remote Qdrant (default: empty)

Requirements

  • Python 3.13+

  • uv package manager

  • Docker (for Qdrant)

  • MCP-compatible client

License

MIT License - see LICENSE file for details.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/p-funk/FEGIS'

If you have feedback or need assistance with the MCP directory API, please join our Discord server