Skip to main content
Glama

FEGIS

__init__.py1.12 kB
"""Fegis MCP Server - Transform YAML archetypes into production MCP tools. Fegis is an MCP server that converts structured prompt configurations (YAML archetypes) into validated MCP tools with semantic memory. It provides: - Dynamic tool generation from YAML archetype configurations - Semantic memory storage with hybrid vector search via Qdrant - Strategy-based search with configurable result views - Production-ready MCP protocol compliance with JSON Schema validation Key Components: FegisConfig: Configuration management with environment variables QdrantStorage: Vector database integration with hybrid search SearchHandler: Strategy-based search system Example: >>> from fegis.config import FegisConfig >>> config = FegisConfig.from_env() Architecture: YAML Archetype → fastjsonschema → MCP Tools → Memory Storage → Strategy-Based Search """ from __future__ import annotations from .config import FegisConfig from .search import SearchHandler from .storage import QdrantStorage __version__ = "2.0.0" __all__ = [ "FegisConfig", "QdrantStorage", "SearchHandler", ]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/p-funk/FEGIS'

If you have feedback or need assistance with the MCP directory API, please join our Discord server