Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
flatten_for_mcp.py1 kB
import json from typing import Any, Dict def is_primitive(v: Any) -> bool: return v is None or isinstance(v, (str, int, float, bool)) def _flatten(obj: Dict[str, Any], parent: str = '') -> Dict[str, Any]: out: Dict[str, Any] = {} for k, v in obj.items(): key = f"{parent}_{k}" if parent else k if is_primitive(v): out[key] = v elif isinstance(v, list): if all(is_primitive(x) for x in v): out[key] = v else: out[f"{key}_raw_json"] = json.dumps(v) elif isinstance(v, dict): nested = _flatten(v, key) out.update(nested) else: out[key] = str(v) return out def flatten_for_mcp(payload: Dict[str, Any]) -> Dict[str, Any]: if not isinstance(payload, dict): return {} return _flatten(payload, '') if __name__ == '__main__': import sys data = json.load(sys.stdin) print(json.dumps(flatten_for_mcp(data), indent=2))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server